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thesis through the knowledge gained from their classes.

As research for Department of Defense decisions to move in the

object-oriented direction, this thesis may be a little late, since some

organizations have already decided to move in that direction. For example

Air Force Standard Systems Center has decided that all development will

essentially be object-oriented as part of their modernization program [52].

Hopefully this thesis will, however, help to support such decisions and
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the military.

Note there is a glossary of technical terms located in Appendix A.

Kevin J. Routhier
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Abstract

Despite the impressive accomplishments in relational database

research, greater support is needed for persistence of the new types of data

encountered with ouject-oriented programming. The concept of object-

orientation ib not new in the realm of programming; however, its utilization

in database inanagement systems is still immature. Regardless of this fact,

there is an urgency for object-oriented database technology.

With this increase in demand for the next generation databases comes

the need to examine object-oriented data modeling versus the conven jonal

entity-relationship modeling of relational database design. This thesis

objective is to analyze both paradigms to determine if object-oriented

modeling can significantly improve Department of Defense systems. After

analyzing the entity-relationship paradigm and a representation of object-

oriented modeling techniques we see a unifying of conceptual models

encompassing both application and database development. Object-

orientation's higher level of abs4raction enables modeling of all problem

domains and provides a common language between developer and client.

The critical issue in adoption of the object-oriented paradigm becomes

not whether to adopt, but how to adopt object-oriented techniques. The

benefits of object-oriented technology close the semantic gap by helping the

computer to "see" things our way.
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ENTITY-RELATIONSHIP VERSUS OBJECT-ORIENTED

MODELING AND THE UNDERLYING DBMS

I. Introduction

1.1 Overview

Object-oriented database management systems (OODBMS) can mean

different things to different people. Many object-oriented databases are

currently being marketed and used, although some object-oriented

researchers would not consider them "truly" object-oriented. The research

into this next generation database system is dynamic and buzzing with

controversy over terminology and exactly what object-oriented databases

should contain and do. "Three points characterize the field at this stage: (i)

the lack of a common data model, (ii) the lack of formal foundations and (iii)

strong experimental activity" [1:2]. However, one thing is sure in the

database industry today: if the term "object-oriented" is in the name or title,

a product or book sells! When referring to the current OODBMS research

efforts to solve the requirements of a completely object-oriented database

management system (DBMS), Cattell asserts that, "in the DBMS

marketplace, customers will not be willing to wait for one DBMS that does

everything" [10:3]. It appears that there is an urgency for OODBMS

technology even though the area is not fully realized.

This research will concentrate on the data modeling area by

comparing the most recent object-oriented (00) information models with
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the contemporary entity-relationship (ER) model(s) while referencing their

respective database management systems. 00 and ER paradigms are both

methods for representing software data requirements and for conceptual

database design. Both are concerned with modeling real-world objects or

entities, their attributes, and their relationships to each other. 00,

however, goes beyond the ER paradigm by associating behavior with the

objects in addition to their data structure. Moving from ER to 00 data

modeling changes the traditional view of programs and programming

from a collection of functions performed on data to a collection of abstract

objects defined by their functionality or services. It is characteristic that

such a modeling approach can be complex and diverse, and be resisted by

more traditional designers. Codd states that until a comprehensive data

model is accepted for the object-oriented approach, investment in OODBMS

is risky [14:480]. While the risk of embracing the object-oriented database

management system is controversial, the prevalence of data modeling

techniques for object-oriented design remain undisputed. Dyer and Roth

contend that object-oriented design methods are beneficial regardless of the

database management system selected, and can be used even when the risk

of using OODBMS is deemed extensive [20:1-2].

1.2 Background

Before the OODBMS, two generations of database systems were

prevalent in the 1970's and 1980's, respectively; thus the name third-

generation has been given the object-oriented database system of the 1990's

[48:1]. Figure 1 illustrates that the application and database environments

have gradually transferred application program responsibilities to the
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database management arena. The desired capabilities of the third-

generation database system appear to push even further in the same

direction as behavior enters the DBMS environment to supplant functions.

This characterizes a shift from the concept of performing functions on data

to the concept of discrete objects that contain both identifying data and

behavior. It is important to note that as database exploration continues in

this direction, the major advances realized from prior database generations

"must not be compromised by third-generation systems" [48:4].

P m1st Ge Application
Program (Network) Environment

Functions Program (Relational)

Data Functions Program (OODBMS)

File 1/0 Query Functions Program

Files Access Query Query

Data Access Access

Data Behavior

DBMS I ed
Environment Data

Figure 1. Evolution of Database and Application Environments

(adapted from [38:5]).
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File-based systems often require their data to be structured

specifically for the particular application program using the data. This

dependence resulted in considerable duplication of data and a laborious

time keeping this data consistent among the many files. When the first-

generation databases came into existence, this once redundant and

application dependent data was kept regulated in one uniform "file" or

database. Management of access to the data became the responsibility of

the database management system, so data integrity could be achieved [53:2].

Another benefit was one data manipulation language could be used to

collect data records. However, navigation through the database network or

hierarchy had to be accomplished by the application programmer. "As a

result, the database systems of 1970 were costly to use because of the low-

level interface between the application program and the DBMS, and

because the dynamic nature of user data mandates continued program

maintenance" [47:112].

The second-generation relational databases took away the navigation

complexity problem inherent in the network databases by structuring the

data in an easy-to-understand tabular form. The addition of a high-level

query language into the relational database system reduced the amount of

code required by the application programmer to get to the needed data.

Consequently, data independence was realized, freeing the user from the

need to know or care how the data was physically or logically stored. These

past two decades of technological advances have helped to close the

semantic gap between the application programmer's "real-world view" and

the logical schema of the database and its physical schema implementation

as shown in Figure 2. "These capabilities freed the user from dealing with
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low-level details of physical data organization, recovery, and coordination

among users" [10:49].

application P -a- DBMS --

application logical physical
semantics schema schema

Current Technology

S-application
I- '•DBMS

application logical physical
semantics schema schema

OODBMS Technology

Figure 2. Closing the Semantic Gap [38:23].

The third generation of OODBMS technology promises to close this

semantic gap even further because it "has user-oriented and developer-

oriented concepts" [38:22]. These OODBMS concepts appear promising

considering the impressive accomplishments to date. There are, however,

many legitimate concerns about performance and reliability inherent with

any newly proposed technology.
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Throughout the history of DBMS technology, information modeling

has taken on many forms to describe the data stored in databases, show any

required consistency constraints, establish a logical schema and

graphically represent how the data is related. The current entity-

relationship models are being modified or replaced to provide new

conceptual tools for the evolving OODBMS. Since the OODBMS will close

the semantic gap by storing more "real-world" objects which may require

handling far more complex data than the relational database, the resulting

data model(s) will likewise be more convoluted [10:5].

1.3 Problem Statement

As programming evolved toward the object-oriented paradigm,

resulting in the need for a supporting object-oriented database

management system, many techniques for modeling object-oriented

information emerged. However, no standard information modeling

paradigm has emerged to assist in the design of object-oriented databases.

"Most object-oriented analysis and design techniques are informal and are

prone to ambiguity and inconsistency" [15:18]. "No comprehensive data

model has yet been published for the object-oriented approach. To be

comprehensive, it must support all of the well-known requirements of

database management" [14:480]. An examination of object-oriented

information modeling compared to traditional entity-relationship modeling

and the underlying database management systems is needed to address the

risk of investing in the object-oriented approach.
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1.4 Research Objectives

The overall purpose of this research is to discover whether the object-

oriented software technology can significantly improve Department of

Defense systems. This project, sponsored by Software Technology for

Adaptable Reliable Systems (STARS), is to compare the entity relationship

and object-oriented information modeling techniques and, accordingly, the

underlying relational DBMS and OODBMS to see if object-orientation is the

paradigm to adopt in software engineering. The research will reflect

current modeling techniques and their potential for software and database

design, and subsequently, feasible and actualized object-oriented technology

benefits, touching on areas of interest to military applications, maturity,

standards, distributed systems, portability, reuse, embedded system

potential, etc.

1.5 Summary of Current Knowledge

1.5.1 Object-Oriented Basics. The terminology may differ among

resources, but the basic concepts of object-oriented software remain much

the same. We begin with an object, which is an abstract entity or anything

we wish to model in our system. The object has attributes or instance

variables that contain data about the object together with behavioral

characteristics called services or methods. The object attributes can

themselves be objects. This concept can be easily understood when we think

of an assembly line robot as an object. The robot can provide certain

services and has attributes like sensors, arms, claws, etc. Each of these

attributes can be an object with capabilities and attributes of its own. This
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abstraction concept of separating behavior from implementation is much

like the abstract data type (ADT) found in programming. Our robot object is

much like a stack ADT that has a data structure and operations (push, pop,

top, is empty, is full) that can be performed on it, but at the macro level.

Because of encapsulation, code which uses the ADT is not affected by

changes in the implementation of its behavior [31:62].

Objects have interfaces with the rest of the system which consists of a

set of messages [35:428] or service requests [15:9]. These messages are

simply requests passed to objects or among objects without them worrying

about how the request is accomplished. Each object has implementation

code, called methods or services, through which it responds to the

messages. The method could be as simple as returning a constant value or

some elaborate function to calculate a value or perform some operation.

Our robot, for example, could be sent a message by the assembly line

manager to paint the next car red, and it will do it without further painting

instructions needed. All it needs to know is what color to paint the car,

since it is already programmed (has a method) for how to paint the car.

Just as global data in application programs evolved toward the

localization of variables into procedures (see Figure 3), so the network and

relational database information-which is essentially global data-is

localized with the methods into the objects of the object-oriented database

(see Figure 4). When variables became localized their access became

controlled through parameters (note the added parentheses in Figure 3).

Similarly, the access to object data values is controlled through its services.

The modularity, maintenance and reuse benefits obtained through

8



localization, and lost again with the introduction of the database, is once

again restored with the object-oriented database management system. The

result is an "intelligent" database the application programmer can use or

direct to complete the mission without worrying how the database

accomplishes its tasks. [44]

Application Program Application Program

Global Local Procedures Global Local Procedures

o A 3 0 Main 0 0 Main

0  A Do-This A A DoThis()
0 A A 0-&

SDo That 0 0 Do That()
A0 0 Do h0

A 0 Calc Sum 
A CalcSum()

A A 0 O0 A
0 0 [0 CalcProd 00 CalcProd()

Figure 3. Localization of Variables.

The object-oriented database stores complex data types and the

behavior rules (services or methods) that need to go with them. An object

may change the way it is physically stored depending on the number of

object instantiations. To be efficient, the storage may go from an array, to

linked list, to a hash or B-tree as it grows in size, without the application

noticing. This ability to modify how an object is defined without affecting

the rest of the system is called data independence.
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Application Program Application Progra

Main Mi
DoThis()

DoThat()

CalcSum( )

CObject-Oriented Database

Object Alpha

Ao i•3 oevi ee1
0 3 I_0 Service 25Database ýOA AIService 3,

EObject Bravo
E3 AO 0 13 & 000 00 1Service 4

0 A 0 0 A ] 0 Object Charlie
3 oA 0 .0•0 0 Service 6

AA 3 o D ServiceZ7

Figure 4. Localization of Object Data.

Groups of similar objects become a class, where the objects are

instantiations of the class. Polygon is an example class with a possibly

infinite number of instances of polygon objects that embody the class.

Objects are similar when they respond to the same messages, use the same

methods, and have attributes of the same name and type [35:428]. When

classes have similarities, they can be placed into hierarchies to allow

inheritance of shared-valued variables, as well as shared methods.

"Inheritance is a relationship between classes which allows a new class to

be defined as the specialization of another, its parent" [15:10]. This class-

superclass relationship is very similar to an "ISA" or "IS-A" relationship in

an entity-relationship model, where lower-level entity sets inherit

properties from the higher-level entity set(s). Changes can be made

10



instantly to all subclasses through inheritance because code reuse is

intrinsic to the system. Consequently, the possibility of huge ripple effects

can arise for maintenance if the classes are not structured well. The

likelihood of multiple inheritance exists if a class inherits characteristics

from two or more superclasses. Any conflict with inherited, same-named

properties (as shown in Figure 5) is handled by giving precedence to the

locally defined property. At any time the user can explicitly choose to

override a default by redefining the service [15:10] or specifying which

superclass property to inherit [33:28].

PERSON

MILITARY-MEMBER CIVILIAN

ENLISTED OFFICER

AF-PILOT RESERVE-AF-PILOT

Figure 5. Inheritance Example.

A simple example of inheritance and multiple inheritance is

depicted by Figure 5. Looking at the hierarchy we see that an AF-PILOT is

an (ISA) OFFICER, an OFFICER is a MILITARY-MEMBER, and a

11



MILITARY-MEMBER is a PERSON. A RESERVE-AF-PILOT is a

CIVILIAN as well as an OFFICER in the military, and inherits properties

from both superclasses. All these classes in the hierarchy have similar

variables associated with a PERSON (e.g. name, age, sex, etc.). All

subclasses of MILITARY-MEMBERs have like variables, such as rank,

time-in-service, etc., that differ from CIVILIAN instantiation variables. A

service that may differ among all of these classes might be how that

person's pay is calculated-the enlisted pay scale is different from an

officer's; a pilot gets flight pay; and a reservist gets two paychecks. In this

case the calculate-pay service would need to be defined at the lowest levels of

the hierarchy: ENLISTED, AF-PILOT, and RESERVE-AF-PILOT. To

avoid conflicting inheritance RESERVE-AF-PILOT would need to clarify

which attributes it will chose to inherit from the multiply inherited

attributes (like name and social-security-number) of both superclasses

OFFICER and CIVILIAN. Another method would be to redefine or

override the conflicting name and social-security-number attributes in the

RESERVE-AF-PILOT class.

The physical organization of an object-oriented database also deviates

from a relational database simply because of the many possibilities of

storing specialized data types. Some of these objects may be large text data

with a method that calls the editor or word processing application program

in which it was created. This would allow modifications through that

particular application and save the resulting document as a new data

version. Other data that may require separate application programs to

handle them are audio, video and graphical data objects. These present

many possible applications where object-oriented techniques may shine.
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1.5.2 Current Research Directions. This research essentially

consists of an extended summary of current knowledge. Many areas of

concern require continued research to better evaluate the benefits of this

next generation object-oriented database system and its information

modeling techniques. The following will show the major directions the

current research has taken.

On the database evolution scale shown previously in Figure 1, we

currently stand technologically between the second and third generation of

databases. Current research appears to be progressing in two directions

represented by the "Third-Generation Data Base System Manifesto" [48] and

"The Object-Oriented Database System Manifesto" [1]. The former group

seems to be progressing towards enhanced relational database research, by

integrating object-oriented principles into current relational database

technology. The latter approach (evolved from object-oriented

programming languages) is to ignore the "limiting" relational database

technology and develop totally new approaches to solving the object-oriented

challenge. Cattell seems to think that both directions will continue, with

the enhanced relational research aimed toward business applications,

while the latter research targeted at the many scientific and specific object-

based applications [10:235].

Many specific research areas have been isolated, with each expert

seeing some as more important than the others. All, however, seem to

agree that database system technology is not yet mature; aggressive

research needs to continue at the fundamental level in order to solve the

rapidly evolving database application problems of the all-too-near future.
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"In addition to being important intellectual challenges in their own right,

their solutions offer products and technology of great social and economic

importance, including improved delivery of medical care, advanced design

and manufacturing systems, enhanced tools for scientists, greater per

capita productivity through increased personal access to information, and

new military applications" [47:114].

Though there is a lack of standards in the field of object-oriented

technology, much concern exists as to what and when standards need to be

applied. Sometimes applying standards too early can stifle further

progress in research. "It is a classical, and unfortunate, pattern of the

computer field that an early product becomes the de facto standard and

never disappears" [1:2]. One area, however, where standards would be

beneficial is in object-oriented design and modeling. These areas provide

more of a conceptual view of data modeling without affecting database

research decisions.

The methodology of object-oriented database design is quite complex

and remains an iterative practice due to the need for behavior modeling and

class partitioning decisions. Many techniques will be covered in more

detail throughout this thesis. As an example of the decision making

activity, here is a general iterative process of just the object-oriented

database schema design using six "easy" steps:

(Step 1) Initial Design: The user specifies a collection of classes and a

set of constraints among them. Each class definition consists
of a set of superclasses, a set of instance variables, and a set of
methods.

14



(Step 2) Class Compilation: Each class definition is compiled so that it

inherits instance variables and methods from its superclasses.
During compilation, conflicts among inherited instance

variables (and methods) and locally defined ones are resolved

by a given set of conflict resolution rules. The compiled version

of a class consists of only a set of instance variables and a set of

methods, without a superclass declaration.

(Step 3) Schema Verification: The initial design is checked for

consistency and non-redundancy. For each declared

constraint, an appropriate verification should be performed.

Typical verification tasks in this step are: "Is the set of

constraints consistent?", When a user declares A [is-a] B, can
A really become a subclass of B?", "Are there any equivalent

classes or redundant IS-A relationships in the set of

constraints?", etc.

(Step 4) Schema Interrogation: During the lifetime of a database, the

user can query against a schema and the constraints on that

schema. This step is necessitated by the need to understand

non-obvious aspects of the current class hierarchy and to

prepare for the next schema change operation. Typical queries

raised by the user in step 4 are: "Is A a subclass of B?", What

are subclasses of A?", "Is A disjoint with B?", etc.

(Step 5) Schema Modification: Typical schema change operations are:
"create a new class", "create a new IS-A relationship among

classes", "drop an existing class", etc. All the schema change

operations in the taxonomy can be applied to the schema.

Constraints on the schema also can be changed.

(Step 6) Schema Verification: The schema resulting from schema

change operations and constraint modifications must be

rechecked for consistency and non-redundancy. Typical

verification tasks in step 6 are the same as those in step 3.

15



Steps 4, 5 and 6 are repeated iteratively during the lifetime of an object-

oriented database. [33:32]

Many graphical methods of data modeling exist to assist in the

design process. These methods are also automated in various computer-

aided software engineering (CASE) tools. Modifications to old techniques

seems to be the general trend. The latest of these techniques is the

introduction of Objectcharts which are essentially extensions of Statecharts

[15:9]. The variety of object-oriented data models being developed show the

continuing effort to represent real world objects in a logical diagrammatic

specification for object-oriented design.

1.6 Scope

This research will compare the current entity relationship modeling

techniques with object-oriented modeling proposals to date. The underlying

relational database management system (RDBMS) will also be compared to

the proposed OODBMS. The military's key concerns of performance and

reliability will be addressed with respect to the major areas of each system.

1.7 Approach/Methodology

Research will begin with an historical literature search of relational

databases and entity-relationship modeling techniques. This search will

try to uncover some of the major issues and concerns that were prevalent

when the RDBMS construct was first proposed, and how they were

resolved. A similar literature review will be accomplished on object-

oriented modeling, current issues and future concerns of the various object-
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oriented approaches proposed. An optimistic, though balanced, approach

will be taken during comparison of both systems and evaluation of

OODBMS expectations. The conclusion will entail recommendations to

STARS regarding directions for future research and military

implementations.

1.8 Document Summary

Chapter 2 describes the entity-relationship model and the relational

model which semantically links it to the underlying relational database.

This chapter also looks at the past and present concerns and

accomplishments of the model and database to possibly predict about the

future of the next-generation object-oriented field. Chapter 3 covers the

current trend to expand the entity-relationship model and provide new

modeling techniques for object-oriented database design. Several object-

oriented modeling approaches will be reviewed along with their inherent

trend toward unification of both software and database technologies and

design paradigms. Analysis of object-oriented information modeling and

the related database promises and concerns will be addressed in Chapter 4.

Chapter 5 contains conclusions with respect to the thesis objectives and

recommendations for further research.
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II. Entity-Relationship and Relational Data Modeling

2.1 Overview

In this chapter we will cover both the entity-relationship and

relational data models since they are key representations of the object-based

and record-based logical models, respectively. Since its presentation by

Chen [11] in 1976, the entity-relationship data model has become one of the

most widely used and accepted object-based logical models in database

design. "The [ER] model is as easy to use and understand as it is pictorial

(i.e., graphical). It shows all types of higher-level abstractions, various

relationships, and mapping constraints and cardinalities explicitly"

[42:207]. The object-oriented data models, covered in Chapter 3, include

many of the same concepts that are in the entity-relationship model. For

example, both models are based on a view and collection of real world

objects. The relational model uses a simple table format for its data

structure and is mainly concerned with the actual values of the data to

determine relationships. "The simplicity of the relational model is a benefit

in ease of use and mathematical tractability, but is also a limitation" [10:5].

The limitations of the relational model, however, are overcome by the

introduction of extended relational models such as the RM/T model (T for

Tasmania, where it was first presented in 1979 [14:vi]) and the object-

oriented models discussed in Chapter 3.
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Before covering these data models we need to look quickly at the

schema architecture of the database in order to understand the abstraction

level(s) we wish to model. We also must understand the database life cycle

to see where database modeling and design fit in.

2.2 Levels of Abstraction

From the history of database evolution (see Figure 1) we can see data

independence as a common thread to the advantages realized as the

semantic gap between application programmer and physical database (see

Figure 2) is continually narrowed. This data independence covers both the

physical and logical aspects of the database system. It is more easily

understood when we look at the database from it's different levels of

abstraction. Figure 6 distinguishes between the physically stored data

structure, the logical view of that data, and the particular user views they

want or are allowed to see. These database views relate to the internal,

conceptual, and external schemas, respectively. The interfacing or

mappings between these schemas is the job of the database management

system and includes the user interface language, forms and/or menu. The

following is a brief description of these three levels of semantic abstraction.

The internal level (sometimes called the physical level [35:4]) of

abstraction contains data structure usage/definition information, their

available access mechanisms, and record to address space distribution.

The mapping from this schema to the actual database is accomplished by

the DBMS using functions provided by the operating system.
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Figure 6. The Three-Level Architecture of a Database [50:12].

The conceptual level of abstraction is the main area where the data

model is used to abstract the internal view by defining the information

contents of the database in general, without reference to the data structure

or access path definitions. The data model used has a "language" or

conceptual tools to describe the database information in simple terms or

structures. "The conceptual view is intended to serve as a neutral

description from which the external and internal views are derived" [43]
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The external level (or view level [35:4]) of abstraction provides

individual views of the database using only those parts of the conceptual

view that are of concern to or allowed to be seen by a particular user of the

database.

This three-level architecture, presented by ANSI/SPARC in 1975

[35:20-21], provides three distinct advantages consistent with data

independence. "First, the user or application system is freed from having

to know where and how the data they use are physically stored. Second,

heterogeneous hardware and software integration is simplified. Finally,

the isolation of conceptual data definitions separate from their internal

storage format allows for physical component replacement with minimal

disruption" [43].

The DBMS handles all the interfaces or mappings between these

schemas, as well as the interface to the user. Figure 7 shows the major

components of a DBMS and how the formerly addressed three-level

architecture of the database forms the three schemas incorporating the

data dictionary. Table 1 indicates the association of these DBMS

components to the actual interfaces shown previously in Figure 6.

21



er

1:1 1

1/0 processor Output generator

Parser

DBMS
Precompil

Authorization control

Integnity Update Query

checker processor processor

Generation of Optimizer
executable code

Recovery Transaction Log book
;i manager

manager

niý;a er LData manager

Data ct ona
RExterna sc emas Database

onceptu sc ema
Intern sc ema

Figure 7. Organization/Components of a DBMS [50:241.

22



Table 1. Database Interfaces versus DBMS Components [50:27].

Interface Associated DBMS component(s)

To the user 1/0 processor (monitor)

External <--> conceptual level Parser, precompiler,

update and query processor

Conceptual <--> internal level Code generator, optimizer

Internal level <--> database Transaction manager,

device and storage manager

2.3 Database Life Cycle

Entity-relationship data modeling and the relational model are

described by Teorey [49] within the realm of the database life cycle. The

following steps are his overview of the database life cycle and indicate when

the entity-relationship and the relational model are used.

I. Requirements analysis. The database requirements are

determined by interviewing both the producers and users of

data and producing a formal requirements specification. That

specification includes the data required for processing; the

natural data relationships; and constraints with respect to

performance, integrity, and security. It also defines the
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hardware and software platform for the database
implementation.

II. Logical design. The global schema, which shows all the data
and their relationships, is developed using conceptual data
modeling techniques such as ER. The data model constructs
must ultimately be transformed into normalized (global)
relations. The global schema development methodology is the
same for either a distributed or centralized database.

a. ER modeling. The data requirements are analyzed and
modeled by using an ER diagram that includes, for
example, semantics for optional relationships, ternary
relationships, and subtypes (categories). Processing
requirements are typically specified using natural
language expressions or SQL commands along with the
frequency of occurrence.

b. View integration. Usually, when the design is large and
more than one person is involved in requirements

analysis, multiple views of data and relationships
result. To eliminate redundancy and inconsistency

from the model, these views must eventually be
consolidated into a single global view. View integration
requires the use of ER semantic tools such as
identification of synonyms, aggregation, and

generalization.

c. Transformation of the ER model to SQL relations. Based

on a categorization of ER constructs and a set of
mapping rules, each relationship and its associated
entities are transformed into a set of candidate relations.
Redundant relations are eliminated as part of this
process.
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d. Normalization of candidate relations. Functional

dependencies (FDs) are derived from the ER diagram.
They represent the dependencies among data elements

that are keys of entities. Additional FDs and
multivalued dependencies (MVDs), which represent the
dependencies among key and nonkey attributes within
entities, can be derived from the requirements
specification. Candidate relations associated with all
derived FDs and MVDs are then normalized to the
highest degree desired by using standard normalization
techniques. Finally, redundancies that occur in
normalized candidate relations are analyzed further for

possible elimination, with the constraint that data
integrity must be preserved.

III. Usage refinement. In this step the goal schema is refined in
limited ways to reflect processing requirements if there are
obvious large gains in efficiency to be made. Usage refinement
consists of selecting dominant processes of the basis of high
frequency, high volume, or explicit priority: defining simple

extensions to relations that will improve query performance;
evaluating total cost of query, update, and storage; and
considering the possible effects of denormalization. The
justification for this approach is that, once local site physical
design begins, the logical schema is considered to be fixed and
is thus a constraint on efficiency. The database designer

would like to remove this inflexibility if possible. Nevertheless,

the usage refinement step makes assumptions about the
physical design environment such that one may consider it to

be actually an advanced stage of physical design.

IV. Data distribution. Data fragmentation and allocation are also
forms of physical design because they must take into account

the physical environment, that is, the network configuration.
However, this step is separate from local schema and physical
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design, because design decisions for data distribution are still
made independently of the local DBMS.

A fragmentation schema describes the one-to-many

mapping used to partition each global relation into fragments.
Fragments are logical portions of global relations, which are
physically located at one or several sites of the network. A data

allocation schema designates where each copy of each
fragment is to be stored. A one-to-one mapping in the
allocation schema results in nonredundancy; a one-to-many
mapping defines a replicated distributed database.

Three important objectives of database design in
distributed systems are
"* the separation of data fragmentation and allocation
"* control of redundancy, and
"* independence from local database management systems.
The distinction between designing the fragmentation and

allocation schema is important: the first one is a logical
mapping, but the second one is a physical mapping. In

general, it is not possible to determine the optimal
fragmentation and allocation by solving the two problems
independently since they are interrelated. However, near-
optimal solutions can be obtained with separable design steps,

and this is the only practical solution available today.

V. Local schema and physical design. The last step in the design
phase is to produce a DBMS-specific physical structure for

each of the site databases and to define the external user

schema. In a heterogeneous system, local schema and
physical design are site dependent. The logical design
methodology in step II simplifies the approach to designing
large relational databases by reducing the number of data

dependencies that need to be analyzed. This is accomplished

by inserting ER modeling and integration steps (steps Ha and
LIb) into the traditional relational design approach. The
objective of these steps is an accurate representation of reality.
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Data integrity is preserved through normalization of the

candidate relations created when ER modeling is transformed

into a relational model.

VI. Database implementation, monitoring, and modification.

Once the design is completed, the database can be created

through implementation of the formal schema by using the

data definition language (DDL) of a DBMS. Then, as the

database begins operation, monitoring will indicate whether

performance requirements are being met. If they are not being

satisfied, modifications should be made to improve

performance. Other modifications may be necessary when

requirements change or end-user expectations increase with

good performance. Thus the life cycle continues, with

monitoring, redesign, and modifications. [49:3-6]

2.4 Entity-Relationship Model

2.4.1 Basic Entity-Relationship Constructs. The three basic objects

in the entity-relationship data model are entities, relationships, and

attributes. An entity is an instance of a basic data object of interest. The

term entities , or entity set, represents a collection of the same entity type.

An interesting concept is that of the weak entity. The weak entities exist

only because of their dependence on a dominant entity set.

Each entity is characterized by a set of attributes which either

uniquely identifies the entity or describes specific characteristics about the

entity. Due to its total dependence on the "parent" entity for existence, a

weak entity can be modeled as a multivalued attribute within the dominant

entity when there are no other relationships associated with the weak

entity. For example, the PET entity of Figure 8 would be a weak entity
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dependently related to the PET-OWNER entity, or it could be represented

simply as attributes of PET-OWNER using the prefix P to distinguish the

PET specific attributes of PET-OWNER. Sometimes it may be difficult to

distinguish between an attribute or entity set. The distinction depends on

the semantics of the attribute/entity set within the domain of the enterprise

being modeled.
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Finally, a relationship is an instance of a real-world association

among several entities. Like entities, the term relationships, or

relationship set, represents the collective relationship type. Relationships

are distinguished by their degree, mapping cardinality, and existence.

The degree n of a relationship represents the number of entity sets

associated with the relationship. It is rare to find n-ary relationships

larger than three, so the first, second, and third degree relationships are

referred to as unary, binary, and ternary, respectively. The unary

relationship may seem unnecessary, but is used to represent recursive

relationships among entity instances of a single entity set-for example, an

employee manages another employee of the same entity set. The most

common relationship is the binary relationship (association between two

entities), while the ternary relationship relates three entities in such a way

that it cannot be broken down into equivalent, and semantically pure,

binary relationships.

Multiplicity of an association shows the number constraints on

entities that can be in a relationship with a single entity. These mapping

constraints for minimum and maximum cardinality fall within one of

three basic constructs for the binary relationship: one-to-one, one-to-many,

and many-to-many. The relationship's minimum cardinality is either zero

or one, depending on its entities' optional or mandatory existence,

respectively. The maximum cardinality of the relationship is either

variable (by default) or an explicitly defined number.

The entity-relationship model has also been extended to represent the

advanced database abstractions of the more sophisticated database
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management system. The primary extensions that were made to the

original entity-relationship model are grouped under generalization and

aggregation. Generalization takes advantage of the similarities between

entity types that, combined, make up a higher abstraction of the types. For

example, both officer and enlisted personnel can be generalized into a

common entity type called military-member. Aggregation makes it possible

to show relationships to relationships. We can build higher levels of entity

types consisting of a relationship between entities. An example of

aggregation might be an entity called RESERVATION which consists of the

relationship LISTED-ON between the entity PERSON and the entity

FLIGHT.

2.4.2 Entity-Relationship Diagrams. A graphical representation of

the entity-relationship model helps to visualize its overall logical structure.

The graphical components of the entity relationship diagram are easy to

learn and remain relatively consistent, though various authors tend to

have a favorite approach to represent mapping cardinality. Figure 9 gives

the complete entity-relationship diagramming notation as illustrated by

Korth and Silberschatz [35]. The mapping cardinality technique is shown

as taught by Roth [44].

The generic ER diagram shown in Figure 10 demonstrates the

various constructs discussed earlier. Relationship set R1 shows the basic

binary relationship between entity sets El and E2. The multiplicity on these

relationships reveal that an entity in entity set El is associated with zero to

five entities of entity set E2, while an entity in E2 is associated with at least

one entity of El.
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Multiplicity X:Y (ex: 0:1, 1:M, 0:5, etc.)
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(0 or 1)

Y = Maximum cardinality
(variable or number)

Figure 9. Entity-Relationship Diagram Notation.

An example of the unary relationship set, depicted by R2 and E2,

would be parts that are made up of zero or more (0:M) other parts and,

likewise, parts that make up one or more (1:N) other parts. The occasional

ternary relationship is portrayed by the relationship set R4 among entity

sets E5, E6, and E7.

E8 depicts a weak entity set, which is subordinate to a dominant

entity from entity set E7; thus the relationship set R5 is shown here as a

gray diamond to represent that it is an optional diamond notation.
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Figure 10. Entity-Relationship Diagram Example.

The relationship set R3 demonstrates the association of entity set E6

to the aggregate entity set consisting of the relationships R1 and their

corresponding entity sets El and E2. Sometimes the line (link) between R3

and the aggregate box is shown extended to connect directly to the
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relationship set R1. This researcher tends to think this action confuses

aggregation with a ternary relationship construct.

The ISA relationship, depicted by the inverted triangle, exhibits the

generalization of lower-level entity sets E4 and E5 into the entity set E3.

Therefore, the attributes associated with E3 are directly inherited by both E4

and E5. If E3 had a link to some other entity, then E4 and E5 would also

inherit that relationship.

The attribute bubbles may be left off the ER diagram to reduce clutter

as long as they are accounted for using some other mechanism. An

additional modification to the ER diagram, that has become popular from

object-oriented systems analysis and design, is to eliminate the attribute

bubbles and list them as a table within the enlarged entity rectangle.

Figure 11 shows a simple example of this modification. Using this

technique takes up less space and appears less cluttered when the diagram

is of a much larger system.

2.5 Relational Model

Though it is a relatively new model, "the relational model has

established itself as the primary data model for commercial data

processing applications" [35:53]. The relational model is more semantically

separated from the physical schema of the database, thus closing the

semantic gap (see Figure 2) further, than the previous generation of

network and hierarchical models. We'll take a quick look at the relational

model because of its excellent representation of the underlying relational
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database that is widely utilized today-at least in the business application

domain.

I
OR

PRODUT MAE-OFPART

PROD-NO PART-NO
PRICE SIZE

COST

Figure 11. ER Diagram Attribute Modification.

The relational model takes its name from the semblance of the

mathematical abstraction of relations and the image of tables from the

relational database. This correspondence is natural when considering that

each row (or tuple) in a table (or relation) represents an association among

the values from each column (or attribute) in the row. Table 2 clarifies how

the basic terminology is related between the ER model and the relational

model and database.
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Table 2. ER, Relational (Mathematical), and Database Terminology.

ER Model Relational Model Relational Database

Entity set, relationship Relation of degree n Table with n columns

set

Entity, relationship Tuple Row of a table

Attribute Attribute Column of a table

Mapping cardinality Cardinality of Number of rows in

relation table

E. F. Codd states that the link between the relational modAl and that

of the mathematical relation set is based on two basic, yet essential,

properties. "First, all of its elements are tuples, all of the same type.

Second, it is an unordered set" [14:2]. Accordingly, he describes the

relational model as dealing with the tuples by their information content,

rather than by their ordering. Codd also stresses the discipline of not

permitting duplicate tuples (or rows). This discipline maintains a more

accurate database, considering the data is shared by many users. The

mathematical foundation of the relational model allows the database such

procedural and nonprocedural query languages as relational algebra and

(tuple and domain) relational calculus, respectively. These, in turn, define

the basic operations that make up the relational query languages found in

today's commercial database systems.
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Using the simple example found in Figure 11 we can create a typical

relational model of the binary relationship set MADE-OF and the associated

entity sets PRODUCT and PART. Figure 12 shows how the two relations

(tables) are linked through an additional column of associated PROD-NO

attributes in the PART table. Though rows may not be duplicated, a

column can be repeated in another relation in order to form a

connection/relationship between two tables. Note how it is mathematically

possible to see that a product, such as number 950, is made up of parts

numbered 123456 and 345678 simply by referring to PROD-NO column of the

PART table. Though it may appear that part number 567890 is a duplicated

row, the PROD-NO column has different values for each row, showing that

this part is used in two different products. A collection of easy to

understand tables, such as those shown here, is the essence of the

relational model.

PRODUCT PART

PROD-NO PRICE PART-NO SIZE COST PROD-NO

447 349.95 123456 small 60.26 950
853 27.50 234567 large 9.25 853
567 299.99 345678 large 24.73 950
397 786.25 456789 medium 115.15 447
950 99.99 567890 large 50.00 447

567890 large 50.00 567
678901 small 71.00 447
789012 medium 17.85 853
890123 small 210.00 567
901234 large 705.00 397

Figure 12. Sample Relational Database.
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2.6 Early Concerns and Results

"When the relational data model was first proposed, it was regarded

as an elegant theoretical construct but implementable only as a toy. It was

only with considerable research, much of it focused on basic principles of

relational databases, that large-scale implementations were made possible"

[47:113]. In two related papers, Date explodes thirty-four of the earlier

"myths" of relational database management that he quickly clarifies as

mostly misconceptions [17:77; 18:249]. Though some of the "myths" do "have

a grain of truth in them, or are even entirely true, in the form in which they

are stated" [17:79], they do show some of the early concerns with the new

relational database technology.

Myth No. 1: A relational database is a database in which the data is

physically stored as tables.

Myth No. 2: A relation is just a flat file.

Myth No. 3: The relational model is just flat files.

Myth No. 4: "Join" is just the relational version of the parent-child

links found in hierarchic and network systems.

Myth No. 5: Relational systems must necessarily perform poorly.

Myth No. 6: The data must be hierarchically clustered for good

performance.

Myth No. 7: Hierarchic clustering requires pointers.

Myth No. 8: The relational model presupposes (or requires) content

addressable memory.

37



Myth No. 9: Relational databases use more storage than other kinds
of database.

Myth No. 10: The relational approach is intended purely for query, not

for production systems.

Myth No. 11: Automatic navigation does not apply to application
programs, because such programs are forced to operate

one record at a time.

Myth No. 12: Control is not possible in a relational system.

Myth No. 13: Relational systems provide no data integrity.

Myth No. 14: A relational system that included all necessary integrity

controls would be indistinguishable from a hierarchic or
network system.

Myth No. 15: Data has a naturally hierarchic structure.

Myth No. 16: Relational systems do not conform to the official
database standard.

Myth No. 17: Hierarchic and network structures are more powerful

than relational structures.

Myth No. 18: Relational databases involve a lot of redundancy.

Myth No. 19: The relational model is "just theory."

Myth No. 20: Relational databases require "third normal form."

Myth No. 21: The primary key concept is unnecessary.

Myth No. 22: The relational model is only suitable for simple data

(i.e., numbers and character strings).

Myth No. 23: SQL (or QUEL or ...) is a panacea.

Myth No. 24: Database design is unnecessary in a relational system.
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Myth No. 25: Third normal form is a panacea.

Myth No. 26: The relational approach is a panacea.

Myth No. 27: Updating must be done one record at a time.

Myth No. 28: Relational systems cannot handle the bill-of-materials

problem.

Myth No. 29: Relational systems require the physical construction of

numerous intermediate result tables.

Myth No. 30: Foreign keys undermine data independence.

Myth No. 31: Relational systems do not support the data dictionary

concept.

Myth No. 32: Top-down ("entity/relationship") design and

normalization are alternative and competing

methodologies. Top-down design does not apply to

relational databases.

Myth No. 33: The relational approach is just another technological

fad. The relational model does not really differ in kind

from the hierarchic and network "models."

Myth No. 34: "There's no such thing as a relational database."

Even during my last military assignment (as late as 1988), there was

concern as our organization contemplated moving from the current

networking database to a relational database system. The main issues of

discussion were the relational database was easier to understand, yet

perceived to be much slower than was achieved with the current network

system.
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Silberschatz et al. describe the results of the relational database

concerns by showing how "the database research community extensively

investigated the relational DBMS concept" [47:112-113]. They:

Invented high-level relational query languages to ease the use

of the DBMS by both the end users and application
programmers. The theory of higher-level query languages has

been developed to provide a firm basis for understanding and

evaluating the expressive power of database language
constructs.

Developed the theory and algorithms necessary to optimize

queries-that is, to translate queries in the high-level
relational query languages into plans that are as efficient as
what a skilled programmer would have written using one of

the earlier DBMSs for accessing the data. This technology
probably represents the most successful experiment in

optimization of very high-level languages among all varieties
of computer systems.

Formulated a theory of normalization to help with database

design by eliminating redundancy and certain logical
anomalies from the data.

Constructed algorithms to allocate tuples of relations to pages
(blocks of records) in files on secondary storage, to minimize
the average cost of accessing those tuples.

Constructed buffer management algorithms to exploit
knowledge of access patterns for moving pages back and forth

between disk and a main memory buffer pool.

* Constructed indexing techniques to provide fast associative

access to random single records and/or sets of records
specified by values or value ranges for one or more attributes.
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Implemented prototype relational DBMSs that formed the

nucleus for many of the present commercial relational

DBMSs.

The results of this research are seen in the availability and popularity of

commercial relational database systems today.

Two other areas where database research has played a vital role is in

transaction management and distributed database systems. These areas

became "hot issues" due to the popularity of the quickly spreading relational

DBMS. With transaction management there were research breakthroughs

in concurrency control and database system recovery. With the need of

decentralized organizations came research developments in the distributed

database arena to provide location transparency through distributed

concurrency control algorithms. Crash recovery algorithms, query

optimization technology, and multiple copy update algorithms were also

designed for the distributed database environment. "Again we see the same

pattern discussed earlier for relational databases and transactions, namely

aggressive research support by government and industry, followed by rapid

technology transfer from research labs to commercial products" [47:114].

2.7 Current Limitations and Prospects

The simplicity of the entity-relationship and corresponding relational

data model gave rise to their wide acceptance and use, especially in the

business arena. The current limitations of the relational database and

related models lies in the ever growing need for more complex applications

and the resultant complex data representation and storage. "Next-
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generation database applications will have little in common with today's

business data processing databases. They will involve much more data,

require new capabilities including type extensions, multimedia support,

complex objects, rule processing, and archival storage, and will necessitate

rethinking the algorithms for almost all DBMS operations" [47:111]. Cattell

echoes this sentiment when he states that "many applications' data are too

complex to represent using relational tables and queries. The [next

generation DBMSs] are designed to remedy this shortcoming, albeit at the

expense of a more complex data model" [10:5].

2.8 Chapter Summary

We looked quickly at the schema architecture of the database in order

to unlerstand the abstraction level(s) we model, and glanced at the

database life cycle to see where database modeling and design fit in. Once

our foundations were set, we reviewed the entity-relationship and relational

models to discover the simplicity of understanding they provide to the

applications programmer, by shrinking the semantic gap between the real

world view and the physical database. Note from Figure 2, that as the gap

is closed, it moves from right to left; placing more and more responsibility

on the shoulders of the database community.

As we have seen, "the [ER] model is frequently used for database

design. However, it also serves well as a data model for any system that

can be described as entities and relationships between them" [2:642]. The

basic concepts of the ER data model have even extended into the realm of

object-or4^nted data modeling, to include object-oriented systems analysis
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and design as well as object-oriented modeling for database design. In

Chapter 3, we will see modeling examples of the evolving object-oriented

technology that promises to close the semantic gap even further. Even

though the object-oriented field is a relatively new area where standards

are absent, we will see that a single trend is developing.
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III. Object-Oriented Data Modeling

3.1 Overview

From the evolution of database and application environments (see

Figure 1) we have seen the transfer of more and more application concepts

to the database management system. The obvious benefits from heading

into the DBMS arena are the reuse of persistent objects and the data

independence obtained therein. With this transfer of application concepts,

however, there appears to be a merging of software application and DBMS

design principles. Harel [27], Gupta and Horowitz [25], along with Dyer

and Roth [20] see the steps for object-oriented software development applied

just as effectively to a database management system. "Incorporating data-

modeling techniques into the present framework [of systems development]

could serve as an excellent melting pot for combining ideas from the world

of data-intensive systems with ones from the world of reactive systems"

[27:12]. "On the surface the object paradigm for software construction in

general, and database management in particular, appears to be a marriage

of software engineering principles that have been known for a long time"

[25:3]. Though no "silver bullet" [9] exists for object-oriented database

design, "the most comprehensive design methodologies applicable to object-

oriented databases are those which were originally designed for general

software development using object-oriented programming languages"

[20:2]. Because of this natural merging of design methodologies, as both the

database and application environments embrace the object-oriented
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approach, it is difficult to address object-oriented data modeling aside from

the design methods of object-oriented software development. Therefore, we

will also address some of the object-oriented modeling and design

methodologies for application systems that aid in database design.

We have chosen four representative object-oriented modeling and

design methodologies to address specifically. The first methodology we will

look at is the "state-of-the-art" [51:112] Object Modeling Technique proposed

by Rumbaugh et al. [45]. This method provides a balanced approach to

object-oriented modeling and design; it is expressive, yet clear and concise.

The second analysis and design methodology covered will show the single

diagram, multilayered approach of Coad and Yourdon [12; 13]. We will see

that iterating through the layers of this single notation approach is itself

the process of analysis and design. We will then look briefly at another

well-known object-oriented design method advocated by Booch [7]. Here it

will be clear that too much "breadth rather than depth" [51:110] of coverage,

using several diagrams and notations, provides utility early in the design

process, but restricts much needed detail later in the process. Finally, we

will glimpse at one of the latest methodologies, proposed by Dyer [21], to

bring back some of the required "depth" in object-oriented data modeling.

Dyer's eclectic conceptual model for object-oriented database design builds

upon the methodology of Hayes and Coleman in [29] while incorporating the

constructs of Harel's Statecharts [26] and the Objectcharts of Coleman,

Hayes and Bear [15].

Before addressing the object-oriented data models right away, we

need to first look at the basic characteristics and requirements of object-
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oriented data modeling and design. Given the history of adding database

functionality to programming languages these criteria will naturally

reflect many of the same aspects found in object-oriented application

modeling and design.

3.2 Object-Oriented Data Modeling Characteristics

Just as the application and database design methodologies are

converging, Cattell perceives the new data models-extended relational,

functional, semantic, and object-oriented-as slowly combining their

features into a single model [10:7]. This "single" model may not be one

standard model, but may be based on one type of modeling that incorporates

database design in the application design. Dyer and Roth contend that

though there are a variety of object-oriented data models, the object-oriented

software design methods are gaining acceptance as a comprehensive

design technique, because object-oriented programming languages are

realizing the need to support data modeling as well [20:2].

Since a real-world object-possibly having abstract internal structure

and/or behavior-is difficult to model using a straight record-oriented data

model; some form of object-oriented data model becomes crucial. Dennis

Mcleod [25:16] describes four characteristics of an object-oriented database

model and the database system that actualizes it.

1. Individual object identity: Abstract objects can be directly
represented and manipulated in a database, independent of

symbolic surrogates for them. Objects of various modalities
(different media) can be accommodated.
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2. Explicit semantic primitives: Primitives are provided to

support object classification, structuring, semantic integrity

constraints, and derived data. These primitive abstraction

mechanisms support such features as aggregation,

classification, instantiation, and inheritance. The roots of

these semantic primitives are in the "semantic data models"

and in artificial intelligence knowledge representation

techniques.

3. Active objects: Database objects can be active as well as

passive, in the sense that they can exhibit behavior. Various

specific approaches to the modeling of object behavior can be

adopted, such as an inter-object message passing paradigm, or

abstract datatype encapsulation. The important point is that

behavioral abstraction and encapsulation are supported, and

procedures to manipulate data are represented in the

database.

4. Object uniformity: All information (or nearly all) in a database

is described using the same object model. Thus descriptive

information about objects, referred to here as meta-data, is

conceptually represented in the same way as specific "fact"

objects.

These four characteristics are expanded upon by Booch [7] with a list

of four major and three minor elements of the object-model. He asserts that

the major elements are required to be considered object-oriented.

Majo, Elements:

9 Abstraction. An abstraction denotes the essential

characteristics of an object that distinguish it from all other

kinds of objects and thus provide crisply defined conceptual

boundaries, relative to the perspective of the viewer.
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* Encapsulation. Encapsulation is the process of hiding all of

the details of an object that do not contribute to its essential

characteristics.

* Modularity. Modularity is the property of a system that has

been decomposed into a set of cohesive and loosely coupled

modules.

e Hierarchy. Hierarchy is a ranking or ordering of

abstractions.

Minor Elements:

* Typing. Typing is the enforcement of the class of an object,

such that objects of different types may not be interchanged, or

at the most, they may be interchanged only in very restricted

ways.

e Concurrency. Concurrency is the property that

distinguishes an active object from one that is not active.

9 Persistence. Persistence is the property of an object through

which its existence transcends time (i.e. the object continues to

exist after its creator ceases to exist) and/or space (i.e. the

object's location moves from the address space in which it was

created).

Each of these elements are refined, by Walker [51:103-106], into sub-topics

which apply in varying degrees to particular systems or implementations.

Abstraction is further represented by two axes of stratification. The

first divides the domain into layers of complexity and compositeness;

and the second into layers of generalization (is-a-part-of) and

specialization (is-a-kind-of).
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With encapsulation we are concerned with the combination of an

object's data ( its state) and services (operations the object can

provide). Associated with this is the object's interface with other

objects or the messages to which it responds. These messages can be

divided into three categories or protocols: public (response to external

objects), protected (privileged access within a class or hierarchy), and

private (internal to the object).

The decomposition of the application into sub-domains is introduced

to avoid the "implementational flavor" associated with modularity.

Here we recognize networks of closely coupled objects within the

domain and either make them a super-object or identify them as a

natural sub-domain of the application.

Along with single and multiple inheritance of class hierarchy come

design questions with respect to reuse. Where is the appropriate

place to insert a new class into the hierarchy? What is the strategy to

derive abstract superclasses? The design method should help in the

transition from design to implementation since object-oriented

languages do not explicitly support hierarchies.

Typing has varying degrees and raises a problem with language

independence and flexibility of design. Strong typing reduces

flexibility and is usually implementation language dependent while

weak typing is the opposite. The controversy continues; however, the

implementation language should not depart drastically from the

object-oriented paradigm when that design method is selected.
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Problems of concurrency design are the same for object-oriented

programming as for other languages. The autonomous behavior

that exists among objects that can create their own threads of control

must be modeled if the support is available.

Finally, persistence of an object must carry on to the class so that

integrity is maintained. Since object identity implies persistence of

relationships among objects, design must provide a means to avoid

"dangling relationships" when an object is deleted.

Looking at other authors' perceptions of characteristics and

requirements of the object-oriented paradigm, we see similar views.

Rumbaugh et al. [45] list the major themes underlying object-oriented

technology as abstraction (suspending commitments to detail);

encapsulation (information hiding); combining data and behavior; sharing

(inheritance); emphasis on object structure, not procedure structure; and

synergy (among the concepts of identity, classification, polymorphism, and

inheritance). Coad and Yourdon [12; 13] state the pertinent principles for

object-oriented analysiz and design as procedural and data abstraction;

encapsulation; inheritance (portraying generalization-specialization);

association (relationships); communication with messages; pervading

methods of organization (object and attributes, whole and parts, classes and

members identification); scale (to adapt to larger models); and behavior

classification based on immediate causation, change over time, and

similarity of functions. All these characteristics seem to expand upon

Shlaer and Mellor's [46] three basic ideas described by an information
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model: objects which pertain to the problem at hand, attributes of those

objects, and relationships between the objects.

The overall purpose of modeling is to capture the specific aspects of a

problem that are necessary to visualize the domain while reducing

nonessential details that tend to limit our choices of implementation. The

model must be clear enough to communicate your ideas to the customer,

and descriptive enough for the designers to have a complete and consistent

blueprint for construction.

3.3 Object Modeling Technique

The first approach we will look at is the Object Modeling Technique

(OMT) of Rumbaugh et al. [45], because it builds upon the ER model

(unifying application and database design) and is recognized by some as the

most complete and consistent, state-of-the-art object-oriented design method

[20:24; 28; 51:112].

While complaining about the invisibility and unvisualizability of

software, Brooks states that "it has no ready geometric representation in the

way that land has maps, silicon chips have diagrams, computers have

connectivity schematics. As soon as we attempt to diagram software

structure, we find it to constitute not one, but several, general directed

graphs, superimposed one upon another" [9:1070]. Even in his article

Biting the Silver Bullet [27]-triggered by Brooks' article No Silver Bullet

[91-Harel states that "regardless of how well devised it might be, one

conceptual model might not be enough to take us from our initial thoughts

to a final working implementation" [27:12]. These statements appear to be
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true with respect to the OMT. In fact, the OMT methodology uses a total of

three cross-linked graphical models to describe a system through all stages

of development and implementation: the object model describes the abstract

objects of the system (extended ER diagram); the dynamic model shows how

those object interact (state diagram); and the functional model reflects how

the system data values changes (data flow diagram). Each of these models

will be addressed in more detail following a look at the OMT design

methodology.

3.3.1 Object-Oriented Development. The overall OMT methodology

consists of four stages of development where the three models seamlessly

evolve from application domain modeling to system implementation

modeling. The following is a list of the four stages along with the major

steps and output document composition associated with each stage:

1. Analysis: Starting form a statement of the problem, the

analyst builds a model of the real-world situation showing its

important properties. The analyst must work with the

requester to understand the problem because problem

statements are rarely complete or correct. The analysis model

is a concise, precise abstraction of what the desired system

must do, not how it will be done. The objects in the model

should be application-domain concepts and not computer

implementation concepts such as data structures. A good

model can be understood and criticized by application experts

who are not programmers. The analysis model should not

contain any implementation decisions. For example, a

Window class in a workstation windowing system would be

described in terms of the attributes and operations visible to the

user.
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Analysis steps:

1.1 Write or obtain an initial description of the problem

(Problem Statement).

1.2 Build an Object Model.

Object Model = object model diagram + data dictionary.

1.3 Develop a Dynamic Model.

Dynamic Model = state diagrams + global event flow

diagram.

1.4 Construct a Functional Model.

Functional Model = data flow diagrams + constraints.

1.5 Verify, iterate, and refine the three models.

Analysis Document = Problem Statement + Object Model +

Dynamic Model + Functional Model.

2. System design: The system designer makes high-level

decisions about the overall architecture. During system

design, the target system is organized into subsystems based

on both the analysis structure and the proposed architecture.

The system designer must decide what performance

characteristics to optimize, choose a strategy of attacking the

problem, and make tentative resource allocations. For

example, the system designer might decide that changes to the

workstation screen must be fast and smooth even when

windows are moved or erased, and choose an appropriate

communications protocol and memory buffering strategy.

System design steps:

2.1 Organize the system into subsystems.

2.2 Identify concurrency inherent in the problem.

2.3 Allocate subsystems to processors and tasks.
2.4 Choose the basic strategy for implementing data stores

in terms of data structures, files, and databases.

2.5 Identify global resources and determine mechanisms

for controlling access to them.
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2.6 Choose an approach to implementing software control.

2.7 Consider boundary conditions.

2.8 Establish trade-off priorities.

System Design Document = structure of basic architecture for

the system as well as high level strategy decisions.

3. Object design: The object designer builds a design model based

on the analysis model but containing implementation details.

The designer adds details to the design model in accordance

with the strategy established during system design. The focus

of object design is the data structures and algorithms needed to

implement each class. The object classes from analysis are

still meaningful, but they are augmented with computer-

domain data structures and algorithms chosen to optimize

important performance measures. Both the application-

domain objects and the computer-domain objects are described

using the same object-oriented concepts and notation, although

they exist on different conceptual planes. For example, the

Window class operations are now specified in terms of the

underlying hardware and operating system.

Object design steps:

3.1 Obtain operations for the object model from the other

models.

3.2 Design algorithms to implement operations.

3.3 Optimize access paths to data.

3.4 Implement software control by fleshing out the approach

chosen during system design.

3.5 Adjust class structure to increase inheritance.

3.6 Design implementation of associations.

3.7 Determine the exact representation of object attributes.

3.8 Package classes and associations into modules.
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Object Design Document = Detailed Object Model + Detailed
Dynamic Model + Detailed Functional Model.

4. Implementation: The object classes and relationships

developed during object design are finally translated into a

particular programming language, database, or hardware
implementation. Programming should be a relatively minor

and mechanical part of the development cycle, because all of

the hard decisions should be made during design. The target

language influences design decisions to some extent, but the

design should not depend on the fine details of a programming

language. During implementation, it is important to follow

good software engineering practice so that traceability to the

design is straightforward and so that the implemented system

remains flexible and extensible. For example, the Window

class would be coded in a programming language, using calls

to the underlying graphics system on the workstation. [45:5,

261-263]

3.3.2 Object Model. The object model describes the objects of the

system. Each of the three models may vary in importance depending on the

application domain. However, the object model is the most crucial of them

all, since we are emphasizing the object-oriented paradigm. As an

extension of the ER data model, the object model represents objects, the

relationship between them, their attributes, and the services they provide.

The graphical notation of the object model-as in the dynamic and

functional models-provides an easy-to-understand formality that is

coherent, precise, and concise. As we discuss the object diagram you can

reference the complete notation shown in Figures 13 and 14.
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Class: Object Instances:

[Cas N(Class Name) (Class Name)

attribute_name = value

Class Name

attribute
attribute data-type
attribute data-type = default-value

operation Instantiation Relationship:
operation (argument-list)
operation (argument-list): result-type Class N eý) 4 Z Name]

Multiplicity of Associations: Association:

a Exactlyone a1AssociationName
E role-1 role-2 s

- 4 CwssI Many (zero or more)

- Cls Optional (zero or one) Qualified Association:

1+ s One or more IClass-lqualifier Assoc-X

1-2,4Numerically specified

Ternary Association:

Association Name

{°rdered roe- Cls role'3 Cas-

ioleI

Figure 13. Basic Object Model Notation [45:inside cover].
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Link Attribute:

Class-1 Association Name ls-

link attribute

Generalization (inheritance): Aggregation=

SuperchmAssembly Class

de discriminator

Sucas- Part-i-Claýs~s Part-2-Class
S ubcas-11 Sub•,1 P -ss-2l •,-•.

Figure 14. Extended Object Model Notation [45:inside cover].

The notation for object instances allows for two types of object

diagrams: the class diagram and the instance diagram. The instance

diagram would be helpful when there is interest in a specific scenario;

however, the typical object diagram would use the class constructs.

As Figure 13 suggests, attributes and services (operations) of the

object class may or may not be listed under the name; this depends on the

abstraction level of the diagram. When they are listed, it should be in the

region order shown: class name, attributes, and operations. Note the

optional type and default details shown for attributes and the signature

(argument list and result type) details for services. It is important to be
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consistent with the service signatures when a behavior has services on

several classes.

Just as in ER diagramming, OMT relationships are shown as

labeled lines between classes (associations) or instances (links). The

multiplicity symbols located at the line ends show cardinality of the

association. The symbology directly relates to similar notations, such as

Shlaer and Mellor's [46] arrowheads, or the X:Y notation of the ER model

described in Chapter 2. Though these associations may seem pertinent

only to database modeling, Rumbaugh et al. asserts that they "are a useful

modeling construct for programs as well" [45:31].

Figures 13 and 14 also indicate several advanced relationship

concepts that are summarized in Table 3. Though not directly shown by

Figure 14, modeling an association as a class is depicted by expanding the

link attribute box into the recognized three-region box of an object class.

Generalization and inheritance refer to the relationship among

classes in an 'ISA' class hierarchy and the method of sharing attributes

and operations of the superclasses in the hierarchy.

Generalization/inheritance is a fundamental concept of the object-oriented

paradigm, is a popular design abstraction mechanism and promotes code

reuse during implementation. A subclass may override a service of the

superclass (or superclasses, if multiple inheritance), but should never

override the signature of a service. For example, the rotate service for a

circle class, inherited from a figure superclass, would be overridden with a

null operation.
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Table 3. Advanced Link and Association Concepts.

Concept Description

Link attribute A property of the links in an association

Association as a class When links can participate in

associations with other objects or when
links are subject to operations.

Role name Indicates a direction across an
association

Ordering Explicitly shows an ordered set of objects
exists on the "many" side of an
association

Qualification Reduces the effective multiplicity of an
association to disjoint subsets; a form of
ternary relationship

Aggregation A tightly coupled form of association.
Each assembly-part association is an

aggregation

Constraints on the objects, classes, attributes, links, and associations

of an object model are declared within braces near the affected entity. The

"(ordered)" notation shown in Figure 13 is a good example of a constraint

notation. Constraints are expressed using equations or natural language

(e.g. "(salary < $100,000)" to cap employees wages). Rumbaugh et al.
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contends that a "good" object model should also contain many constraints

without compromising simplicity [45:74].

Based on the object model constructs briefly discussed here, it is easy

to see that this model would have high significance in the object-oriented

database design arena as well as in the application domain. Refer to [45]

for further study of these and other advanced topics concerning the object

model and OMT in general.

3.3.3 Dynamic Model. Once the static structure of a system is

understood through the object model, the dynamic model shows us how the

objects change state over time. A state diagram for each "dynamically

important" class is necessary to capture the timing and control issues of the

system. The combined state diagrams-modeling the events and states of

each class-make up the dynamic model. The dynamic model relies

heavily on the "visual formalism" of Harel's [26] state diagram and (when

nesting is required) Statechart notation. "To be useful, a state/event

approach must be modular, hierarchical and well-structured" [26:233].

OMT's dynamic model provides such a generalization hierarchy for states

and events to share structure and behavior. Figure 15 shows the complete

dynamic model notation, and can be referenced as each construct is

addressed.
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Event causes Transition between States:
• State-I ) event(attributes) [condition] /action- • Ste2

Initial and Final State:
11111ni1tL1,Ia eventl event2

Stateresult

In-State Actions and Activity. Snding Event to another Object:
( • ~~event Ste-

State Name Stae -I

entry / entry-action
do: activity-A event2

event-1 / action-1

exit / exit-actionF ls-

State Generalization (nesting): Concurrent Subdiagrams:

01 erm Sfterstat

event1 'even t 1

event2

Sevent3 event2

Splitting of controk Synchronization of control

: f .• event2
evet1 S.ubgtate-l1 ,-Subs ...-3 eent4 .

•f .• ~~event3 • h
•=Subte2j Sub.tatL- event5

Figure 15. Dynamic Model Notation [45:inside cover].
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As seen from the notation, events can have attributes (data values

conveyed by the event), conditions (guard that must be true for transition),

and cause an action on transition between states. Though not explicitly

shown in Figure 15, an action on transition can also be another event. A

corollary to this is that an object/class' action on transition can be sending

an event to another object/class.

Within the state, activities can occur and are listed after the 'do'

reserved word. As shown in the notation, entry and exit actions can also be

used to show all the transitions entering and exiting the state. Entry/exit

actions listed within the state can reduce diagram clutter from showing the

same actions on multiple incoming (or outgoing) transitions. As a bonus,

"they make self-contained state diagrams possible for use in multiple

contexts" [45:1131.

The dynamic model provides for nesting state diagrams to allow for a

natural decomposition to lower-level state diagrams. Aggregation of

concurrent state diagrams is also possible through similar use of Harel's

[26] rounded box notation to cluster subdiagrams, and a dotted line between

them to show the partitions. Synchronization of concurrent activities is

also modeled in a similar fashion by splitting control when necessary, and

later merging that control.

3.3.4 Functional Model. After representing the who and what of the

system through the object model, and the when and where of system state

changes through the dynamic model, we can use the functional model to

represent the how of system data transformations. Computations within
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the system are expressed through an extended data flow diagram (DFD)

notation that Walker suggests is the "least successful" aspect of OMT

[51:111]. Hayes and Coleman state that "DFDs are an inappropriate choice

for the functional model since the flow of data through processes partially

determines an order of computation" [29:175]. In order to better show

system behavior, rather than a particular computation, they prescribe

specifying formal pre-post conditions to supplant DFDs [29:176]. Robert

France, shows that semantically extended DFDs can be used to formally

reason about behavioral properties while benefiting from the flexibility and

intuitive appeal of the popular DFD [22:329]. Whichever way the functional

model ends up being tailored or replaced, Walker agrees "that OMT seems

to make as much sense of DFDs in the object-oriented context as any

previous attempt" [51:112].

The complete notation for the data flow diagrams making up the

functional model can be viewed in Figure 16. The typical DFD specifies the

meaning of operations and constraints through the use of processes, data

flows, actor objects (terminators), and data store objects. Unlike the object

model and the dynamic model, a functional model does not organize data

values into objects or show control information (though control information

can be repeated on the DFD). As a collection of DFDs, the functional model

is useful for nesting functionality of a system by showing its breakdown into

smaller functional units. Constraints can also be used in the functional

model to specify restrictions on operations.
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Process: Data Flow between Processes:

Data Store or File Object-. Data Flow Resulting in Data Store:

Name of Name of
datastore data store

Actor Objects (Source or Sink): Control Flow:.

AtorI AdtoF 2 [boolean resul
Acor1 process Actor-2 process-i -------

Access (dl), Update (d2), and Both (d3) ef Data Store Value:

Data store Data store Data stor

process processprcs

Duplication, Composition, and Decomposition d Data Value:

di d

di composite composite

d2 d2

Figure 16. Functional Model Notation [45:inside cover].

A process, at its lowest level, is a simple operation/function on a

single object without the occurrence of side effects. Side effects can occur,
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however, at higher-level processes if they contain actor or data store objects

(such as the DFD itself). The input and output data arrows can be labeled

according to their role or type of value. The actual implementation of

processes is through the services (methods) of an object class.

Data flows connect objects or processes, simultaneously showing

one's output value and another's input value. As Figure 16 suggests, data

flows can clone into duplicate values, divide an aggregate value, or combine

into one. While data flows show intermediate values of a computation, they

do not change them. Data flows shown as dotted lines are used to represent

the optional control flows of a DFD. The Boolean values shown on control

flows are not input values themselves, but simply control process execution.

Actors (otherwise known as externals) are sources or sinks of initial input

and final output data flows of the functional model

The data store shows data values at rest, or that there is a delay

between the generation and use of data. Like actors, the data stores are

treated as objects. The hollow arrowhead notation provides a new construct

to show a data store object creation. The data flow value using this notation

is then treated as an object.

OMT's combination of the three models (object, dynamic, and

functional) provide an overall picture of the system from different views.

Depending on the application being designed, one model may have more

importance than another. From the database modeling standpoint we

would mainly be concerned with the object model view. In fact, Dyer and

Roth say the simple identification of persistence to the type information
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would complete OMT as a design methodology for both object-oriented

languages and object-oriented database systems [20:23-24].

3.4 Object-Oriented Analysis and Design

Coad and Yourdon's overall five layer (analysis), four component

(design) object-oriented model [12; 13] is graphically depicted by Figure 17.

The five layers represent five activities (not necessarily sequential steps) of

object-oriented analysis (OOA) that show a gradual move from higher levels

of abstraction to more detailed levels. The five layers are iteratively cycled

through as desired until analysis and specification are complete. The four

components of object-oriented design (OOD) are likewise four activities or

vertical slices of the model, and not sequential steps. They are used to

improve and add to the five layered OOA results while maintaining the

stability of the problem domain's organizational framework over time. As

we address the portions of Coad and Yourdon's single diagram,

multilayered model you can reference the appropriate construct in the

summarized notation of Figure 18.

0Am OOD cmoet

Subject layer~
Class-&-Object layer ==m Problem Human Task Data

Structure layer g Domain Interaction Management Management
Attribute layer m Component Component Component Component

Service layer __ _ _ _ I__ j_ _
Figure 17. Five Layer, Four Component Model [13:26].
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1 1Class Class-&-Object

Class Name (top section) Class-&-Object

Attribute 1 Attribute 1
Attribute2 Attributes (middle section) Attribute2

• .. o..

Servicel Service1
Service2 Services (bottom section) Service2

... .o.

Generalization

----r--
Structure

Gen-Spec I 1,m I 1,mWhole-Part
• . Structure

r.-----•

zationl Specialization2 Partl [!

i!

lr Sender •-• Message Connection [r Receiver •l
I !1l ........................................ , .... _ ............. • !11it ......................................... lj

1 1

Subject or Design Component Note: In addition, Object State Diagrams and
(may be expanded or collapsed) Service Charts may be used to specify Services.

Figure 18. OOA/OOD Notation Summary [13:35].
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3.4.1 Five Layers. The "initial" layer is the Subject layer which

identifies the major Subjects (subsystems) of the problem domain. To

prevent information overload inherent in large complex models the Subject

layer shows parts of the overall system in more digestible bites. The

notation is simply a rectangular box, with the Subject name and a number

inside (see Figure 19), for the "collapsed" Subjects. An example of the

"expanded" notation is shown as the outer box in Figure 18, with the Subject

number placed in all four corners. This is used when shown with the other

layers of the model. A partially expanded Subject notation exists that

simply lists the Class-&-Objects within a Subject under the Subject name

and number of the collapsed Subjects.

Co*apswd Ije 1Expanded 1 1

Partially 1. Subject1
Ekpanded

Class-&-Objectl
Class-&-Object2
•__""_ _1 1

Figure 19. Subject Notation [12:112].

The Class-&-Object layer is where we identify the classes (and their

objects) of the problem domain in order to better technically represent the

conceptual view of the real world in our system. "Another motivation for

emphasizing Class-&-Objects is our desire to create a stable framework for

analysis and specification" [12:54]. Though their attributes and services
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may change over time, rarely do the classes and objects of a system. There

is also the simple Class notation to represent a generalization class whose

complete set of objects are portrayed by its specializations using the Object-

&-Class notation. An example of this would be a Generalization-

Specialization (Gen-Spec) structure, where all the Objects of a

Generalization Class are reflected only in the Specification Class-&-Objects

because each specification has one or more differing attributes or services.

If the "StandardThing" specification Class-&-Object had no added attributes

or services beyond the "Thing" generalization Class, as shown in Figure 20,

it could be absorbed into the "Thing" generalization Class, changing it to a

Class-&-Object construct.

In the Structure layer we focus on the complexity of, and the

relationships between Class-&-Objects in the system. The two structures of

concern are the Gen-Spec ("is-a-kind-of") and the Whole-Part ("is-a-part-of")

structures. Note that the notation lines of the Gen-Spec structure relate

classes while the Whole-Part structure lines relate objects. The number or

range marked on the Whole-Part structure line shows multiplicity of each

object that are allowed to make up, or be made up of, another object. The

markings are also read backwards from the typical ER mapping

cardinality. For example, the Whole-Part Structure notation of Figure 18

indicates that "Whole" objects can be made up of one or more (1,m) "Part"

objects, while each "Part" object is a part of only one (1) "Whole" object.
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Thing Thing

Attribute 1 Attribute 1
Attribute 2 Attribute 2
Attribute 3 Attribute 3
Attribute 4 Attribute 4
Attribute 5 Attribute 5

Sr ice 1 OR== Service 1
Service 2 Service 2

SpecialThing StandardThing SpecialThing

Attribute 6 Attribute 6
Attrnibute 7 Attribute 7

Se ce 3 Service 3

Figure 20. Using Class or Class-&-Object Generalization.

The Attribute layer adds more detail to the Class-&-Object layer by

identifying class characteristics. The notation is to simply list the

Attributes in the center section of the Class and Class-&-Object symbols.

"Attributes describe values (state) kept within an Object, to be exclusively

manipulated by Services of that Object. We treat Attributes and exclusive

Services on those Attributes as an intrinsic whole" [12:120]. Attributes are

not available tor direct manipulation from outside sources, except through

the Services provided by the Class-&-Object. Along with listing Attributes,

the Attribute layer identifies Instance Connections to show associations

between Objects (not Classes). Though like the ER relationship notation,
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the Instance Connection line is not labeled. The mapping cardinality is

also placed on the line endpoints as an amount or range, and again reads

differently than the ER notation, as demonstrated in the Whole-Part

structure discussion.

Class-&-Object behavior is identified by the Service layer, where

Services are listed in the lower third area of the Class and Class-&-Object

box. As stated previously, Services are the only "methods" available to the

outside world, or to other objects, whereby the state of an Object can be

altered or queried. In order to better figu e out what services must be

specified the object states need to be identified. This can be done through an

Object State Diagram that shows the Attribute values that change with

respect to behavior change. Coad and Yourdon use the Object State

Diagram notation shown in Figure 21 to show only states and legal

transitions.

state[ Transition

Figure 21. Object State Diagram Notation [12:146].

Once the required services are identified, and listed in the

appropriate Class-&-Object box, the message connections must be noted (as

in Figure 18) to show the process dependencies (need for Services) of

Objects. Coad and Yourdon also use a Service Chart notation (see Figure

22) to more formally specify Services. Though this notation is much like

flow charting, it is considered "ideal.. .for applying the principle of
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procedural abstraction systematically, within the limited context (scope) of

a single Service" [12:158].

X X Condition (if; precondition; trigger, terminate)

I I [ Text block

Q Z Z ) Loop(while; do; repeat; trigger/terminate)

Connector (connected to the top of the next symbol)

Figure 22. Service Chart Notation [12:157].

For documentation purposes the Service Chart would then be placed

appropriately within a Class-&-Object template as outlined by Figure 23.

Though the exact standard is not important, establishing a standard

documentation template such as this is important [23:32].

3.4.2 Four Components. The notation of Figure 18 remains the

same for the four components of the OOA/OOD model. In fact, the "first"

component of OOD starts with the results of OOA. The Problem Domain

Component (PDC) is key to keeping the stability of the problem domain base

throughout analysis, design, and implementation. Any modification to the

PDC is a tradeoff between expressing the modification criteria and

maintaining the stable representation of the problem domain.

Modifications consequently affect the potential reusability of the model with
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other systems of similar problem domain. As you cycle through the four

components of OOD the PDC will most likely change due to changing

requirements, technology (i.e., inheritance capability of the implementation

language), early lack of understanding during OOA, etc.

specification

attribute1
attribute2

external input
external output
object state diagram
additional constraints
notes
service1 <name & service chart>
service2 <name & service chart>

and as needed,

traceability codes
applicable state codes
time requirements
memory requirements

Figure 23. Class-&-Object Template [12:156-157].

The Human Interaction Component (HIC) looks at the people who

use the system and the user interface that is required for them to take

advantage of the maximum system capabilities. This component hits the

"touchy feely" area of software engineering because "Design decisions affect

people. An individual's emotions and mental perceptions may be positively

or negatively affected. And organizational behavior (i.e., corporate culture)

may change, too" [13:57]. Once the customers are classified (by skill level,

organizational level, and/or group membership) it is good to develop task
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scenarios from their point of view and figure a general command

hierarchy. Prototyping may be a large factor in the HIC due to the I'll-

know-it-when-I-see-it mentality of many people. The emotional satisfaction

of the client with the user interface is the primary concern of HIC.

The Task Management Component (TMC) is where decisions to task

or not to task are made. While simplifying the design and implementation

of needed concurrent behavior, tasking adds complexity to design, coding,

testing, and maintenance when not necessary. Tasking decisions involve

identifying event-driven tasks, clock-driven tasks, and establishing priority

and critical tasks. It is important to keep tasks to a minimum and

coordinate them. The notation used for task objects is the Whole-Part

structure with Message Connections. See Figure 24 for the TMC notation

and task definition templates.

The Data Management Component (DMC) is where the database

management system infrastructure is provided, isolating the impact of the

actual database management scheme. Coad and Yourdon recommend

including the design of the data layout and corresponding Services into the

DMC, according to the data management system implemented [13:84]. As

we have seen through our discussion, object-oriented design methods, such

as this and the Object Modeling Technique of Rumbaugh et al. [45] provide

the opportunity to extract traditional relational or network data structures

from the object-oriented design. The visible extension of the ER model gives

us this capability. As Dyer and Roth suggest for the OMT [20:23], simply

identifying persistence in the DMC, by indicating it on the diagram, is all
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that is needed to model designs implemented in object-oriented languages

or database systems.

Corinate

m Task Definition Template

Name
Description
Priority

Task Services included

Name Coordinates by

Description Communicates via

Priority
Services Included
Coordinates By
Communicates Via

Initialize
Start
Standby
Terminate

Figure 24. TMC Notation and Task Definition Templates [13:77].

3.5 Booch's Object-Oriented Design

Booch has several models of object-oriented design that are expressed

using a variety of diagram notations and documentation templates. The

different models of Booch's object-oriented design are summarized in

Figure 25. Though the notation is designed to cover a wide range of system

types and all problem domains, not every aspect of OOD must be used at all

times. Walker feels that "Booch's diagram notation has sacrificed detail or
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depth for breadth" and is limited "in exposing the detailed semantics of the

application" [51:110]. However, he does feel that Booch's object-oriented

design makes "very substantial contributions towards meeting the needs of

the designer" [51:112].

Dynamic semantics

Static semantics
Class structure

Logical viewI.......Logica viewObject structure

Module architecture
Physical view Process architecture

Figure 25. Models of Object-Oriented Design [7:155].

As Figure 25 suggests, the logical view of a system contains the class

and object structures, and are depicted by related class and object

diagrams. The physical model is interested in the module and process

architecture (and associated diagrams), that portray the implementation

software and hardware components. Moreover, these four diagrams

represent the static model of a system while the dynamic semantics of

design are expressed through additional state transition and timing

diagrams. Each of these diagram constructs and notations will be covered

in turn.

The overall process of object-oriented design proposed by Booch is

described as "round-trip gestalt design" [7:188]. This process style is
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described by incrementing and iterating through refinement of the various

system views, and is based on the following four events:

"* Identify the classes and objects at a given level of abstraction.

"* Identify the semantics of these classes and objects.

"* Identify the relationships among these classes and objects.

"* Implement these classes and objects.

This process is completed when "there are no new key abstractions or

mechanisms, or when the classes and objects we have already discovered

may be implemented by composing them from existing reusable software

components" [7:190].

3.5.1 Class Diagrams. The class diagram shows what classes exist

and how they relate to each other. The appropriate notations (called icons)

are shown in Figure 26, and should be referenced as needed during the

discussion.

The amorphous blob or cloud icon represents a class abstraction. It

has a dotted/dashed outline to show that operations are generally done on

the object instances, rather than the class itself. The relationship and

cardinality notation seems extensive and more complicated than necessary.

However the identification of an "undefined" relationship is handy for early

class conceptualization. The class utility icon represents one or more free

subprograms, which are "procedures or functions that serve as

nonprimitive operations upon an object or objects of the same or different

classes" [7:82].
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Class Cardinality
I•n I exported from class category 0 zero

name name private to class category 1 one* zero or more
name imported from class category + one or more

Szero or one

Class utility n n

name Class relationship

X labeliXpQ=be X uses (for interface)

Class category X label X uses (for implementation)

n -label --. instantiates (compatible type)name

x labe -A L instantiates (new type)

label - inherits (compatible type)

global label UUM inherits (new type)

Class category visibility label N, metaclass

label label undefined

Figure 26. Class Diagram Icons [7:inside cover].

When grouping classes into subject areas to reduce diagram clutter

the class categories notation can be used. The relationship arrow shows

dependencies on other class categories by pointing to the class category

from which classes are imported. Instead of multiple arrows, the word

"global" would simply be placed in the lower left corner of the class category

box to show that all its exported entities are imported by all the other class

categories. Finally, the class diagram templates shown in Figure 27 are

used to provide documented substance to the graphic notation.
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Class template Class utility template
Name: identifier Name:
Documentation: text Documentation:
Visibility: exported / private / imported Visibility:
Cardinality: 0/ 1/ n Generic parameters:
Hierarchy: Interface / Implementation:

Superclasses: list of class names Uses:
Metaclass: class name Fields:

Generic parameters: list of parameters Operations:
Interface / Implementation
(Public/Protected/Private):

Uses: list of class names
Fields: list of field declarations
Operations: list of operation declarations

Finite state machine: state transition diagram
Concurrency: sequential / blocking / active
Space complexity: text
Persistence: persistence / transitory

Operation template o
Name: identifier
Documentation: text
Category: text
Qualification: text
Formal parameters: list of parameter declarations
Result: class name
Preconditions: PDL / object diagram
Action: PDL / object diagram
Postconditions: PDL / object diagram
Exceptions: list of exception declarations
Concurrency: sequential / guarded / concurrent / multiple
Time complexity: text
Space complexity: text

Figure 27. Class Diagram Templates [7:inside cover].

3.5.2 State Transition Diagrams. As noted in Figure 27, the finite

state machine element of the class template is documented through the use

of state transition diagrams. The dynamic behavior of classes is

represented in Figure 28 using a slight variation of the typical state

transition diagram notation. There is also an associated template to

further document every state transition.
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State State transition

events
name N

actions

start sp State transition template

stt Events: list of identifiers
Documentation: text
Action: PDL / object diagram

Figure 28. State Transition Diagram Icons & Template [7:inside cover].

3.5.3 Object Diagrams. The object diagram is used to semantically

illustrate the operations and finite state machine dynamics of the

important mechanisms that manipulate the class diagram abstractions.

"Object diagrams are prototypical: each one represents the interactions

that may occur among a collection of objects, no matter what specifically

named instances participates in the mechanism" [7:169]. The complete

object diagram notation and documentation templates are displayed in

Figure 29.

Objects and their relationships are the principle components of the

object diagram; however, object visibility and message synchronization add

detail to the diagram. The solid line blob/cloud, unlike the class's dotted

line, indicates an object instance. Note that the object's properties,

especially concurrency and persistence, may be placed in the lower left

"corner" of the cloud. The relationship lines indicate that messages are

sent between objects both inside (solid) and outside (gray) the system.
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Otject Object template
concurrency - Name: identifier

sequential blocking / active Documantation: text
persistence - Class class name

persistent / static / dynamic Persistence: persistent /
static / dynamic

Message template
Object relationship Operation: operation name

list off messages Documentation: text
inside the system Frequency: aperiodic / periodic

label Synchronization: simple / synchronous /
Soutside the system balking / timeout /

asynchronous

Visibility symbol Synchronization symbol

* same lexical scope D simple

same lexical scope (shared)
-- synchronous

* parameter balking

F'1 parameter (shared)

a field timeout

n' field (shared) - asynchronous

Figure 29. Object Diagram Icons & Templates [7:inside cover].

The object visibility symbols should be used (only when necessary) to

indicate how two object see each other. Booch states hierarchical

positioning on the diagram or nesting objects within another (to show

master-slave relationships and aggregation, respectively) can aid in

understanding visibility. If specific message synchronization is needed on

the object diagram, the respective directed line notations of Figure 29 can be
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used. These icons may also be labeled, as the object relationship lines, with

a list of messages.

3.5.4 Timing Diagrams. Booch suggests three methods to express

time-ordered events and the flow of control of the objects. The first method

is to simply number the object messages on the object diagram in the order

they are implemented. When the flow of control is not strict and orderly,

but conditional, a program design language (PDL) or structured English

description of the control flow can be included with the object diagrams.

Finally, an adapted timing diagram (as Figure 30 illustrates) can be

helpful.

object A operation 1
* operation2

object B---------------------- - - Otd e time

object C operation 4 * creation
[ l ,destruction

object D operation 3 operation 5

I I I I I I I I I I I i I I -

Time --

Figure 30. Timing Diagram Icon [7:inside cover].

From the notation we can see that object lifetimes can be shown on

the timing diagram using creation (*) and destruction 0!) symbols. Several

timing diagrams may be stacked to represent multiple threads of control, or

used to show primary dynamic behavior versus asynchronous external
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events and/or exceptional condition flows of control [7:174]. Hard real-time

constraints may also be annotated on the timing diagram.

3.5.5 Module Diagrams. As we head towards implementation

module diagrams are used for the physical design of class and object

allocation. Specific design allocation of the classes and objects will depend

greatly on the implementation language chosen. The complete notation

and template for module diagrams, including the subsystem icon for

clustering parts of the system, is shown in Figure 31.

Main Subprogram Generic Subprogram
Subsystem program specification subprogram boy

name name name name

name

L. J

Jexported from subsystem Package Generic Package
name [private to subsystem] specfication package body
name imported from subsystem name name name

-----------------------------------
"---- I

L__I_ I

Module visibility E M
label

Task Task

Module template specification body
Name: identifier name name

Documentation: text
Declarations: list of declarations

Figure 31. Module Diagram Icons and Template [7:inside cover].
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Though each icon is shown separately, a module that has two parts

(specification and body) would be depicted as "shadowed" specification,

since the body would be below it. Note the three different ways a module can

be named, depending if it is private, exported, or imported. The visibility

arrow shows compilation dependency by pointing to the module(s) it

(another module) depends on. Documentation of the modules can be

completed using the template for static semantics, or a timing

diagramlPDL for dynamic semantics.

3.5.6 Process Diagrams. When required by a large enough system

that demands a distribution of the syk.ý-m programs, the process diagram

comes into play. The icons and templates of Figure 32 are used to visualize

system process allocations as well as the involvement of devices.

Connectiono show that the processors and devices communicate

through some hardware (or radio transmission) coupling. If the

connection is shown to be in just one direction, an arrow may be used. How

processes are scheduled within a processor can be indicated in the lower

left corner of the processor icon. Once again, templates may be used to

document any further explanations.

As with any notation, Booch states that the diagrams continue to

evolve during the design process as detail and decisions necessitate. He

also contends that this methodology can scale up and down depending on

the system being developed. Booch's language-independent approach to

object-oriented design "mirrors his move from concern simply with Ada-
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targeted systems to consideration of a much wider range of potential

implementations" [51:109].

Processor Connection Device

label

name Connection template name

Name: identifierxDocumentation: text
Characteristics: text

preemptive / nonpreemptive /Device template

cyclic / executive / manual Name: identifier
Documentation: text
Characteristics: text

Processor template
Name: identifier
Documentation: text Process template
Characteristics: text 6 Name: identifier
Processes: list of processes Documentation: text
Scheduling: preemptive / nonpreemptive / Priority: integer

cyclic / executive / manual

Figure 32. Process Diagram Icons and Templates [7:inside cover].

3.6 Eclectic Object-Oriented Modeling

Blending Harel's higraph and Statechart notations [26], the notation

of Coleman, Hayes and Bear's Objectcharts [15], the object-oriented analysis

methodology of Coleman and Hayes [29], and the "best parts of others" (such

as Rumbaugh et al. [45] and Booch [7]), Dyer proposes An Eclectic Method

for Object-Oriented Database Design [21]. We will discuss the notations that

apply as we walk through each of Dyer's six steps for object-oriented

database design.
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1. Develop a higraph-based ER diagram, supplemented by a

natural language description describing constraints, rules,

and other behaviors.

2. Use the ER diagram and text description as a specification to

develop a structural design for implementing the database.
The design product should be a configuration diagram

together with class and object templates. Check for

completeness by stating consistency conditions between

relations.

3. From the configuration diagram and class/object templates

define a declarative functional model using templates of

transition pre-conditions, post-conditions and invariants.

4. Use the configuration diagram and functional model to define

a dynamic model using Statecharts or Objectcharts.

5. State reasoned arguments and test case event flows to show

that the dynamic model and functional model are consistent.

6. Iterate through the steps looking for missing classes,

relationships, attributes, constraints, events, etc.

3.6.1 Higraph-Based Entity-Relationship Diagrams. Step 1 of Dyer's

methodology requires the use of an extended ER diagram based on Harel's

higraph notation. The higraph notation "which combines notions from

Euler circles, Venn diagrams and hypergraphs, and which seems to have

a wide variety of applications" [26:234], augments the ER model for the

object-oriented arena. The various semantics of the higraph can be viewed

from the illustration of Figure 33.
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Figure 33. Representative Higraph Notation.

The notation is essentially blobs (rounded rectangles) [21:10] and

arrows. Just as with Venn diagrams, sets are represented by the blobs,

and blobs within a blob shows exclusive-or (XOR) subsets of a blob. Thus,

sets B and C from Figure 33 are subsets of blob A. And when we look at a

member of set A we see either a member of set B or set C, not one of each.

Unlike the Venn diagram, however, overlapping blobs do not mean an

intersection of sets unless there is a blob within the intersection. For

example, the significance of the intersection of sets D and G rests solely in

set F. The AND decomposition of a blob is represented by placing a dashed

line between the required subcomponents of the set. Note that an element

from component K and one from component L is required to make up an

element of set J (labeled with a tab outside the blob). Being in J means that

you are composed of a K (M or N) element and a L (0 or P or Q) element.
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* Finally the arrows connect sets to other sets showing a relationship

between elements of the sets.

J, AI F

K B ,

MN OP

Figure 34. ER Diagram Example.

Using this notation greatly enhances the flat ER diagram by

providing depth where hierarchies (is-a-kind-of and is-a-part-of) are

predominant. Figure 34 shows how the compact higraph example of
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Figure 33 expands when put into the extended ER diagram notation of

Rumbaugh et al [45]. Both figures represent the same information, but the

higraph notation of Figure 33 uses less symbols and links. The relationship

arrows were left unchanged to simplify the example; however, they became

longer and more easily tangled (crossed) by flattening the diagram. Notice

that an unnecessary design decision had to be made with respect to blob J in

order to represent the AND composition of K and L using the ER diagram.

It is easy to see that the higraph notation readily allows for blowing up of

smaller blobs into more detail or condensing them to eliminate clutter at

higher levels of abstraction. Like the ER notations we have covered,

attributes may also be listed within the blobs, and cardinality added to

relationship edges.

Along with the higraph-base ER diagram, Dyer suggest using

natural language descriptions to show constraints, rules, etc. The

components of Step 1 result in the system specification, with which we

enter Step 2.

3.6.2 Configuration Diagrams. The configuration diagram shows

service interfaces between object instances. The specific notation is

described by Coleman, Hayes, and Bear [15:11] using the window system

alarm clock example of Figure 35. The boxes depict objects and the class to

which they belong, while solid and dashed lines represent provided and

required object services, respectively. Like Booch's object diagrams, the

object configuration diagram shows object interfaces and which objects

request services from another. They differ by not accounting for control or

scheduling structures.
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set alarm: bell:
AlarmClock Window

cancel openwindow

stop

timeofday closewindow

alarmtime

time?
clock:
SystemClock

Figure 35. Alarm Clock Configuration Diagram [15:11].

Along with the configuration diagrams prescribed by Step 2, Dyer

says to develop class and object templates. The recommended notation for

these templates are as described by Booch, and previously represented in

Figures 27 and 29 [21:23].

3.6.3 Declarative Functional Model. The functional model suggested

by Dyer is the same as that presented by Hayes and Coleman [29]. They

dispense with data flow diagrams of Rumbaugh et al. and describe the

system level operations by pre-post condition specifications. "The resulting

specifications are declarative because they do not reference how the

operations are to be computed" [29:176]. The formality of the template used

is not as important as having a standard to show transition pre-conditions,

post-conditions and invariants.
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3.6.4 Statechart/Objectchart Dynamic Model. In Step 4, Dyer

suggests using an expanded form of Harel's Statecharts [26] for the

dynamic model. "Objectcharts, or some other modification of Statecharts,

provide the best dynamic model and also can be used easily to show

consistency with our chosen functional model" [21:23]. See Figure 15 for a

similar use of higraphs, to expand the dynamic model, by Rumbaugh et al.

Though they will be quickly covered here, consider the appropriate

reference for a detailed explanation of Harel's Statecharts [26] and the

Objectcharts of Coleman et al. [15].

Statecharts are another application of higraphs. Harel defines the

feature of a Statechart with the following equation:

Statecharts = state diagrams + depth + orthogonality

+ broadcast communication. [26:233]

Looking at Figure 36 we can see how all these features are combined. The

XOR decomposition of the higraph notation reflects a state diagram, in that

an object can be in only one state at a time, and allows for depth of

abstraction in top-level design. For example, being in state A means that

you are either in state B or C, but not both. Likewise, for higher level

abstractions we may only care that we are in state A. The arrows, of

course, represent transitions between states, and can have a pre-condition

or guard indicated between brackets. Figure 36 shows that event b will only

fire when D is in state G. The default arrows show that entering state Y,

without specific destination states expressed, would result in entering both

states B and F. Finally, the AND decomposition of components A and D
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show parallel state combinations of being in state B or C while being in state

E, F orG.

Figure 36. An Example Statechart.

Dyer contends that this notation takes "advantage of topology to

reduce complexity over the flat state diagram" [2 1:17]. For example,

transition g would cause a state change from any state combination of Y to

state Z. This would require a transition arrow from each state of Y if we

were using a flat state diagram.

The Objectcharts build upon the Statechart by specifying how

transitions affect attribute values. They also differ from Statecharts by

eliminating broadcast communication and replacing it with address

indicators. These differences can be viewed as we compare an example

Statechart (Figure 37) of the alarm clock, from the configuration diagram of

Figure 35, with its corresponding Objectchart (Figure 38. Note that the

ringing state would correspond to the Window of the bell class (from Figure

wereusin a lat tat diara 2



35) being open/active, and the state is obtained when the openwindow

service is requested or broadcasted.

(in timeupdate [0.5,1.5t sec) b tScancel set

alarmon Ite/ open window

close window (in ringing 60 sec)

Figure 37. Alarm Clock Statechart [15:12].

Attributes that are affected by state transitions are annotated with

their type in the Objectchart. For example, the attributes timeofday and

alarmtime are shown within the states that they are effective. Coleman et

al. define observers as services that do not change the state of an object-

they may just report an attribute value [15:12]. The Objectchart enhances

the Statechart by showing the name and type of allowable observers for each

state. The hidden attribute, finish, replaces the timed transition from the

ringing state. Hidden attributes are treated as observers, and are placed

within brackets to show that they are internal to the state.



FlbAlarmClock 1

SystemClock.time?( I tUime) !aamf

(in timeupdate [0.5,1.5i sec)

e Window.openwindowit s icd i

at thmeoWindow objet ArIet ofqeries maybeadedtoth

S •_•[finish: ti
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Figure 38. Alarm Clock Objectchart [15:13,16).

Services are either provided or requested by an object. Provided

services are simply listed on the transition, while requested services

require an address indicator of the object whose service is required.

Window.openwindow is an example of a requested service message directed

at the Window object. Arguments of services may be added to the

Objectchart as either input or output (preceded by a "I") parameters. For

example, set(t:time) shows the input parameter of time t for the set service,

while SystemClock.time?(I t:time) shows the output parameter of the time?

service.

Just as in the other object-oriented models we have seen, Dyer

"concludes" his design methodology by suggesting iteration and refinement
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of the design. His methodology is current and, clearly, requires more

research and work as any new notation does. However, it does show the

trade-offs between complexity and expressiveness that are inherent with

object-oriented modeling.

3.7 Chapter Summary

We have looked at the characteristics of object-oriented data modeling

and glanced briefly at four representative object-oriented modeling

approaches. It was interesting to see that though most of these techniques

were directed at object-oriented software development, they could easily be

used for object-oriented database design (with minor tampering, if any).

This outcome is natural considering the movement of application

functionality into the object-oriented database arena to advocate data object

behavior in a persistent environment.

In Chapter 4, we will address the promises and concerns of object-

oriented technology as we analyze object-oriented information modeling

versus relational data modeling. Just as promises and concerns arose

when the relational database methodology developed during the hierarchic

and network database generation (see chapter 2), there are many promises

and natural concerns as the object-oriented technology evolves during the

reign of the relational database generation.
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IV. Comparisons and Analysis

4.1 Overview

As previously depicted by Figure 1, more and more of the application

programmer responsibilities are moving into the database environment as

we move from the function-oriented toward the object-oriented paradigm.

This is an anticipated progression since, "in the object-oriented paradigm,

data are considered primary and procedures are secondary; functions are

associated with and attached to related data" [16:1]. Incorporating behavior

with the data, and allowing for communication between data objects,

naturally results in the need for a much more sophisticated DBMS. "The

more sophisticated the database environment the less you, the designer,

have to do" [24:50]. This statement is, of course, true for the application

program designer, but not for the database designer. The redeeming

quality to the increase in OODBMS design responsibilities is that the object-

oriented database designer only has to do the work "once," due to the

inherent reuse (of data and behavior) found in a database system. When

the semantic gap is large (see Figure 2) as with the RDBMS, data is

reusable, but there is much duplication of effort in the application

environment to do the diverse program functions performed on the data.

As we analyze and compare object-oriented modeling to entity-

relationship modeling it is important to note that we are not necessarily

looking for a winner and a loser. Since we have seen from the literature

that the major object-oriented modeling techniques generally incorporate
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the features of entity-relationship modeling, either technique would be

appropriate depending on the level of "complexity" of the enterprise being

modeled. We quote "complexity" since some contend that, "object-oriented

designs do not make complexity go away, but they repackage it into fewer

but larger units" [16:8].

4.2 Object-Oriented Versus Entity-Relatiot. ship Databases

Before we go on to analyze object-oriented modeling compared to

entity-relationship modeling it is a good idea to see the fundamental

differences between the underlying object-oriented and relational database

management systems. We should first realize our "comparison" is not

necessarily one of apples to apples, but apples to oranges, since the object-

oriented database technology is not yet mature enough to even consider for

replacement of the relational DBMS [19:7041. This fact, however, does not

eliminate the need to examine both database differences in theory, leaving

the underlying OODBMS maturity issues for further research. The

RDBMS research results of Section 2.6 demonstrated what can be

accomplished through aggressive research into the fundamental levels of

database technology.

Figure 39 provides an indication of the basic differences between

traditional and object-oriented databases. Here we see the passive nature of

the traditional database information and the object-oriented database's

passive and active data used to reflect the behavior of objects.

In Table 4, Martin and Odell [41] summarize the different goals and

characteristics of the classic relational database and the prevailing object-
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oriented database. They also stress that, depending on the goals of the

computing environment, either database may have advantages over the

other.

TRADITIONAL DBMS OBJECT BASE

APPLICATION B USER INTERFACE
PROGRAM U
Process, Manipulate F INITIATE

F REQUEST RESULT

DBMS R

STORE

RETRIEVE

PASSIVE, STRUCTURED

DATADAAMTO

E.G., RELATIONS ACTIVE OB

Figure 39. Traditional versus Object-Oriented Databases [42:262].

Table 4. Summary of Relational and Object-Oriented Database Differences

[41:212]

Relalional Databases ObctOriented Databases

Primary goal: data independence Primary goal: encapsulation
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Table 4. (Continued)

Relational Databases ObjectOriented Databases

Data only. The database generally Data plus methods. The

stores data only. database stores data plus
methods [services].

Data sharing. Data can be shared Encapsulation. Data can be used

by any processes. Data are only by methods of classes. Data
designed for any type of use. are designed for use by specific

methods only.

Passive data. Data are passive. Active objects. Objects are active.

Certain limited operations may be Requests cause objects to execute

automatically triggered when the their methods. Some methods
data are used. may be highly complex, for

example those using rules and

an inference engine.

Constant change. Processes using Classes designed for reuse.

data constantly change. Classes designed for high

reusability rarely change.

Data independence. Data can be Class independence. Classes

physically reorganized without can be reorganized without

affecting how they are used. affecting how they are used.
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Table 4. (Continued)

Relational Databases Object-Oriented Databases

Simplicity. Users perceive the data Complexity. Data structures
as columns, rows, and tables. may be complex. Users are

unaware of the complexity
because of encapsulation.

Separate tables. Each relation Interlinked data. Data may be
(table) is separate. JOIN interlinked so that class methods

commands relate data in separate achieve good performance.
tables. Tables are one of many data

structures that may be used.
BLOBs (binary large objects) are
used for sound, images, video,

and large unstructured bit

streams.

Nonredundant data. Nonredundant methods.
Normalization of data is done to Nonredundant data and methods
help eliminate redundancy in are achieved with encapsulation

data. (It does nothing to help and inheritance. Inheritance
redundancy in application helps to lower redundancy in

development.) methods, and class reuse helps
to lower overall redundancy in

development.

SQL. The SQL language is used 00 requests. Requests cause the
for the manipulation of tables, execution of methods. Diverse

methods can be used.
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Table 4. (Continued)

ReatonlDatabases Object-riented Databases

Performance. Performance is a Class optimization. The data

concern with highly complex data from one object can be

structures. interlinked and stored together,

so that they can be accessed from

one position of the access

mechanism. OODBs give much

higher performance than

relational DBs for certain

applications with complex data.

Different conceptual model. The Consistent conceptual model.

model of data structure and access The models used for analysis,

represented by tables and JOINs is design, programming, and

different from that in analysis, database access and structure

design, and programming. are similar. Application

Design must be translated into concepts are directly represented

relational tables, and SQL-style by classes in the OODB. The

access. more complex the application

and its data structures the more

this saves time and money in

application development.

The last comparison given in Table 4 was actualized by the various

iterative design methodologies discussed in Chapter 3 versus the needed

transition from ER diagram to relational model tables presented in Chapter

2. This unified conceptual model allows for cheaper development and
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maintenance costs by reducing translations between different models. It

appears that as programming languages and data management combine

in a common conceptual model the object-oriented database becomes the

next logical step in database evolution to handle the integration of persistent

data structures and behavior (services). Figure 40 shows how the various

needs not supported by traditional relational databases converged to form

this new generation of database management systems.

Better Performance thanRelational Databases

BLO~sActive 
Databases

(Sound, Video, etc.)

OBJECT-ORIENTED
DATABASESKnowledgebases DA BSE

(e.g., Expert Systems)

Persistent Data for "0oy
C++, Smalltalk, etc.

Abstract Data s
(User-Defined Types)

Figure 40. Converging Database Needs [41:204].

The term object-oriented as it applies to commercial databases may

be misleading since "on studying marketing brochures all systems look

very much alike: they claim to do everything and solve all problems" [4:3].
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One classification of existing "object-oriented" databases distinguishes four

types of systems from the users' perspective:

1. Language-Oriented Database Systems. These systems offer the

user of a given language a database system adapted to that
language. The goal of the system is to solve the impedance
mismatch between the programming language and the database

system; the data model of the database matches that of the
programming language.

2. Persistent Programming Languages. These systems are

programming language systems that offer persistent data
management. There is no database system but rather a way of

declaring that data is persistent or not.

3. Engineering Databases. These systems are database systems
well adapted for engineering work. Such systems have their own
data model, which is in general not object-oriented but rather

entity-relationship based and supports complex object data types
with attributes, hierarchical records and relationships.

4. Object-Oriented Databases. These systems are database systems
that integrate object-oriented technology. They are true database
systems supporting an object-oriented data model. [4:4-5]

Acceptance of the object-oriented paradigm (and related expenses) in

the database arena will naturally bring resistance. To save past corporate

investments, in the relational database, future object-oriented databases

will most likely (and currently do) incorporate the relational paradigm, but

at the expense of efficiency [41:213]. This fact should be taken into account

when comparing performance of a relational database with that of just

such an "enfeebled" object-oriented database. Another factor to consider in

database comparisons is the type of queries invoked against the relational
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and object-oriented databases. Relational databases are intended for

queries against large sets of data while object-oriented databases implicitly

assume operations against individual objects [45:329-330]. Object-oriented

database navigation using pointer traversal is much faster than the

relational database navigation using joins, making the relational database

appear slower overall, because it is not usually optimized for single-object

operations.

4.3 Object-Oriented Versus Entity-Relationship Modeling

Is there really a difference between object-oriented and entity-

relationship modeling, since we have seen that conventional ER notations

and constructs can be extended to include object-oriented ideas? Maybe

entity-relationship modeling (with extensions) is merely a subset of, or a

first step towards, object-oriented modeling. John Hughes summarizes the

relative merits of entity-relationship/relational and object-oriented methods

for data modeling under the four categories: data types, data integrity,

schema evolution, and data manipulation [31:115]. Note that it is

sometimes difficult to separate discussion of the ER and 00 modeling

techniques from their underlying databases since it is the database

implementation that provides the needed persistence of much of the same

data modeled in software development.

4.3.1 Data Type Differences. With respect to ER modeling and the

RDBMS Hughes says, "by definition, attributes of normalized relations are

non-decomposable and in practice they tend to have relatively simple data

types (integer, real, string, data, etc.). Operations on relations are
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* restricted to retrieving and updating tuples identified by attribute values"

[31:116]. On the other hand, 00 modeling and the object-oriented database

encapsulate behavior with the data structure, and these services can also be

customized for specific objects. The data types of the object-oriented data

model are not limited to the simple data types of the ER model and its

RDBMS; however, efforts have extended the relational database to include

BLOBs, nested data types, etc. Additionally, object classes may have as

"attributes" other classes, and can even be passed as a message parameter

to a service.

In discussing the diagramming techniques of 00 and ER modeling,

Martin and Odell declare, "the major difference between object schemas

and ER diagrams is that ER diagrams can express attribute types that are

within an entity type-object schemas do not" [41:461]. This is true to the

extent that in object-oriented analysis any within attributes (physical

values) are objects in their own right, thus the only real attribute types

depicted are functions or associations with other outside objects. Later in

the design process, implementation details may prompt the need to

distinguish between attributes that are within (physical values) or outside

(pointers) of objects. Because entity-relationship data modeling is

implementation dependent (it designs for a relational database), ER

diagrams express within associations as attribute types and outside

associations as relationship types with other entities. Realistically, as we

have seen with the object-oriented models discussed in Chapter 3, object

schemas use some extended form of ER diagramming since many of the

simple data type "objects" serve only as within attributes of an object class.
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4.3.2 Data Integrity Differences. "The relational model is incapable

of expressing integrity constraints with greater semantic content than

straightforward referential integrity" [31:117]. Most of the time the

application programs manipulating the relational database must handle

such constraints (e.g., multiplicity of a relationship: one-to-one, one-to-

many, etc.). If one application fails to enforce those constraints, data

integrity is essentially lost. In the object-oriented model, however, services

of an object enforce data integrity (only once). Services are the only means

through which objects can be manipulated, thus all application programs

using the database end up using the same code through those services.

Entity integrity is also different since the relational model uses the

values of primary keys to uniquely identify entities, while an object is

defined as having a unique identity in object-oriented modeling. A change

in object state does not affect its identity.

4.3.3 Schema Evolution Differences. The ability of the data model to

evolve with changing requirements defines schema evolution [31:115].

Schema evolution with the relational model has limited facilities and is

restricted to the kernel of the system domain objects. Because the data

structures of the database and application programs that manipulate them

are loosely connected, changes to the schema requires changes to both

database and applications. Since "application code" reuse is inherent in

object services and tightly coupled with the data structures in object-

oriented modeling, changes to the schema are considerably more feasible.
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4.3.4 Data Manipulation Differences. "A fully-integrated, strongly-

"typed data manipulation language has significant implications for integrity

preservation" [31:152]. This is obtained through the well-defined services

provided by objects in object-oriented data manipulation. The impedance

mismatch between SQL (and similar languages) and the application

programming languages using a relational database is probably the major

difference between 00 and ER data manipulation. In object-oriented data

manipulation the programming languages have little, if any, impedance

mismatch, and work primarily through the well-defined services.

However, "not every user of an object-oriented database wants to interact

with the system through a procedural programming language. There is

clearly a need in most application areas for a high-level query language

and tools such as report generators" [31:153]. Here we can see there is still

needed research in the area of object-oriented "extended" SQL, and that the

relational database is not dead in areas requiring mostly set-level ad hoc

queries, versus the "assumed" single object-at-a-time (actually "record-at-a-

time" according to Date [19:702]) queries of an object-oriented database.

4.4 Object-Oriented Technology Benefits

Understanding the overall benefits of object-oriented technology is

necessary when making a long term decision to move in that direction.

Focusing on the specific areas of current immaturity in the object-oriented

field may result in narrow short term business successes, but will

ultimately result in the stagnation of an organization (see Section 4.5).

Martin and Odell [41] provide an excellent summary of the many benefits of

object-oriented analysis and design. Moreover, they conclude that the most
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important benefit is the associated change from thinking like a computer

(function-oriented) to making the computer "think" like a human (object-

oriented) [41:41]. Many of the following benefits are realized only when

object-oriented analysis and design are used with repository-based object-

oriented CASE tools that generate code; however they provide a good

summary of overall object-oriented benefits.

" Reusability. Classes are designed so that they can be reused in
many systems. To maximize reuse, classes can be built so that
they can be customized. A repository should be populated with an
ever-growing collection of reusable classes. Class libraries are
likely to grow rapidly. A preeminent goal of 00 techniques is
achieving massive reusability in the building of software.

" Stability. Classes designed for repeated reuse become stable in
the same way that microprocessors and other chips become
stable. Applications are built from software chips where
possible.

" The designer thinks in terms of behavior of objects not low-level
detail Encapsulation hides the detail and makes complex
classes easy to use. Classes are like black boxes; the developer
uses the black box and does not look inside it. He has to
understand the behavior of the black box and how to
communicate with it.

"* Classes of ever-growing complexity are built. Classes are built
out of classes, which in turn are built out of classes. Just as
manufactured goods are constructed from a bill of materials of

existing parts and sub-assemblies, so too is software created with
a bill of materials of existing well-proven classes. This enables
complex software components to be built which themselves
become building blocks for more complex software.
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" Reliability. Software built from well-proven stable classes is
likely to have fewer bugs than software invented from scratch.

" New software markets. Software companies should provide
libraries of classes for specific areas, easily adapted to the needs
of the using organization. The era of monolithic packages is
being replaced by software that incorporates classes and
encapsulated packages from many different vendors.

" Faster design. Applications are created from preexisting

components. Many components are built so that they can be
customized for a particular design. The components can be seen,
customized, and interlinked on the CASE tools screen.

" Higher-quality design. Designs are often of higher quality
because they are built from well-proven components which have
been tested and polished repeatedly.

Integrity. Data structures can be used only with specific
methods. This is particularly important with client-server and
distributed systems in which unknown users might try to access
a system.

" Easier programming. Programs are built in small pieces each of
which is generally easy to create. The programmer creates one
method for one class at a time. The method changes the state of
objects in ways that are usually simple when considered by
themselves.

" Easier maintenance. The maintenance programmer usually
changes one method of one class at a time. Each class performs
its operations independently of other classes.

"* Inventability. Implementors proficient with the most powerful
00-CASE tools, running on a workstation, find they can generate
ideas rapidly. The tools encourage them to invent and rapidly
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implement their inventions. The brilliant individual can be
much more creative.

Dynamic lifecycle. The target of system development often
changes during implementation. 00-CASE tools make
midlifecycle changes easier. This enables implementors to meet
end users better, adapt to changes in the business, refine goals as

the system comes into sharper focus, and constantly improve the
design during implementation.

Refinement during construction. Creative people such as writers
and playwrights constantly change the design of their work while
implementing it. This leads to much better end results. The best
creative works are refined over and over again. 00-CASE tools
give software builders the capability to refine the design as they
implement it.

More realistic modeling. 00 analysis models the enterprise or
application area in a way that is closer to reality than
conventional analysis. The analysis translates directly into
design and implementation. In conventional techniques, the
paradigm changes as we go from analysis to design and from
design to programming. With 00 techniques, analysis, design,
and implementation use the same paradigm and successively
refine it.

Better communication between information system professionals
and business people. Business people more easily understand
the 00 paradigm. They think in terms of events, objects, and
business policies that describe the behavior of objects. 00
methodologies encourage better understanding as the end users
and developers share a common model.

Intelligent enterprise models. Enterprise models should describe

business rules with which executives want to run their business.
These should be expressed in terms of events and how events
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change the state of business objects. Application designs should
be derived with as much automation as possible from the
business model.

" Declarative specifications and design. The specifications and
design, built with the formality of CASE tools, should be
declarative, where possible-stating explicitly what is needed.
This enables the designer to think like an end user rather than to

think like a computer.

" A user-seductive screen interface. A graphic user interface,
such as the Macintosh, should be used so that the user points at
icons or pop-on menu items that relate to objects. Sometimes, the
user can, in effect, see an object on the screen. To see and point is
easier than to remember and type.

" Images, video and speech. Binary large objects (BLOBs) are
stored, representing images, video, speech, unformatted text, or
other long bit streams. Methods such as compression or
decompression, enciphering or deciphering, and presentation
techniques are used with the object.

" Design independence. Classes are designed to be independent of
platforms, hardware, and software environments. They employ
requests and responses of standard formats. This enables them

to be used with multiple operating systems, database managers,
network managers, graphic user interfaces, and so on. The
software developer does not have to worry about the environment
or wait until it is specified.

" Interoperability. Software from many different vendors can work
together. One vendor uses classes from other vendors. A
standard way exists of finding classes and interacting with
classes. Interoperability of software from many vendors is one of
the most important goals of 00 standards. Software developed
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independently in separate places should be able to work together

and appear as a single unit to the user.

"* Client-server computing. In client-server systems, classes in the
client software should send requests to classes in the server
software and receive responses. A server class may be used by
many different clients. These clients can only access server data

with the class methods. Hence, the data is protected from

corruption.

" Massively distributed computing. Worldwide networks will
employ software directories of accessible objects. Object-oriented
technology is the key to massively distributed computing. Classes
in one machine will interact with classes elsewhere without

knowing where the classes reside. They send and receive 00
messages of standard format.

" Parallel computing. The speed of machines will be greatly

enhanced by building parallel computers. Concurrent
processing will take place on multiple processor chips

simultaneously. (Eventually one chip will have many
processors.) Objects on different processors will execute
simultaneously, each acting independently. A standard Object

Request Broker will enable classes on separate processors to send
requests to one another.

" A higher level of database automation. The data structure in 00
databases are linked to methods that take automatic actions. An
00 database has intelligence built into it, in the form of methods,
whereas a basic relational database does not.

" Machine performance. Object-oriented databases have
demonstrated much higher performance than relational
databases for certain applications with very complex data

structures. This and concurrent computing with 00 design
jointly promise major leaps in machine performance. LAN
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based client-server systems will employ server machines with

concurrency and object-oriented databases.

"* Migration. Existing or non-00 applications can often be

preserved by fitting them with an 00 wrapper, so that

communication with them is by standard 00 messages.

"• Better CASE tools. CASE tools will use graphic techniques for

designing classes and their interaction and for using existing

objects adapted to new applications. The tools should facilitate

modeling in terms of events, triggers, object states, and so on.

00-CASE tools should generate code as soon as classes are

defined and allow the designer to use and test the methods

created. The tools should be designed to encourage maximum

creativity and continuous refinement of the design during

construction.

" Industry class libraries. Software companies sell libraries for

different application areas. Application-independent class

libraries are also important and these are best provided as a

facility of CASE tools.

"* Corporate class libraries. Corporations should create their own

libraries of classes that reflect their internal standards and

application needs. The top-down identification of business objects

is an important aspect of information engineering. [41:32-36]

Note that many of these benefits rely heavily on the use of object-

oriented CASE tools with a code generator and a repository. This is because

object-oriented techniques are more disciplined than conventional

structured techniques, and thus require CASE technology to provide the

"best way we know to build true software engineering" [41:31]. This will be

especially relevant as we head toward more of a model-based software

development (see Section 5.4).
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Though some of the benefits listed here represent potential benefits of

object-orientation, many of the benefits have already been established

through studies and first-hand experience. One such study was done by

Mancl and Havanas on the impact of C++ on software maintenance [40].

Though their paper addresses the different languages of C and C++ used in

a major telephone company system, the actual comparison was between the

different styles of object-oriented programming and conventional

structured programming. They conclude from their study four interesting

maintenance benefits to their company:

1. Software reuse in the maintenance of the studied system has
more than doubled. They achieved 34% reuse from using their

own class libraries and 19% reuse in new class construction
simply through inheritance.

2. New features added to the object-oriented sections of the system
required less effort and fewer interface changes within the
system. 00 interface changes were done 41% of the time
compared to 74% of the time for the conventional structured
design parts of the system. They stress that new feature
development incorporates about one-half of their maintenance
activity.

3. Accommodating external changes on the system resulted in

fewer lines of code changed for object-oriented modules than
for structured design modules. Because of the larger number
of object-oriented files (using C++) the number of code blocks
(contiguous lines of code) stayed about the same as for
structured design modules.

4. Due to inheritance, redesign of selected subsystem using the

object-oriented paradigm are expected to save further in the

114



maintenance effort. (They estimate 60% reduction in

subsystem size for this case.) [40:69]

One area not mentioned directly in the list, but indirectly through the

benefits resulting from thinking in terms of events and objects, is that of

embedded systems and their derived distributed real-time system

environments (as seen in the Space Shuttle's multi-computer architecture).

Levi and Agrawala show that the desired methodology used in distributed

real-time systems "employs objects as the system's elements and assigns

time properties to them with calendars, which are data structures used to

keep track of all known time events for this object in the future. This object-

oriented architecture achieves objectives set for both fault containment and

predictable temporal behavior" [36:5]. Though still mostly in academia,

object-oriented modeling for embedded real-time systems is becoming

increasingly more utilized due to the natural hierarchy of objects in the

real-world [3].

The area of distributed databases was also indirectly addressed in

Martin and Odell's list of object-oriented technology benefits. It is

suggested "that object-oriented techniques could provide a powerful 'glue'

for integrating heterogeneous systems" [6:385]. Though distributed object-

oriented databases are in the infant stage "the object-oriented approach

provides a particularly clean way to decompose distributed computations,

treating objects as independent agents cooperatively computing by sending

each other messages to execute associated methods" [10:199].

One last point of interest to the benefits of object-orientation that

demands repeating is in the area of user-friendly interfaces (appropriately
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listed earlier as "user-seductive" screen interfaces). "To date the main

impetus for the development of object-oriented techniques has been in the

area of graphical user interfaces (GUIs). Many of the GUIs which are so

popular today, such as the Macintosh, Microsoft Windows, OSF Motif and

Open Look, are object-based" [6:381]. It is our contention that much of

today's commercial software capabilities are not fully utilized because of

poor user interfaces. Screen appearance and overall user-friendliness of

an application, in a world that is spending more and more time in front of

the computer monitor, is paramount to the success of the product. When a

system is easy to use, more if its capabilities are used, and thus realized as

helpful to the user.

Though important as a GUI, the "user-seductive" nature of

interfaces goes beyond the computer screen. Human factors engineering is

playing an important role in computer science, as we endeavor to make the

computer "think" and "act" naturally with humans. An up and coming

area in object-based user interfaces is that of the three dimensional GUI

called virtual reality. Devices such as head mounted displays and motion

detecting gloves allow for user interaction with "invisible" real-world objects

in an environment much like the holodeck of the modern television series

Star Trek: the Next Generation. Think of the military benefits of applying

current technology in this way to witness and interact with battle field

simulations much as a child plays with plastic Army (Air Force) toys.
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4.5 Switching to the Object-Oriented Paradigm

"The object oriented paradigm is based on an alternative way of

looking at the old dichotomy of procedure and data, operator and operand; it

is novel yet also a natural extension of well-established software

engineering ideas" [16:2]. Though the object-oriented paradigm appears to

be our next "natural extension" to make in software engineering, we need to

proceed wisely. The idea of planning for new development is nothing new.

Even Jesus addressed the issue two thousand years ago.

Suppose one of you wants to build a tower. Will he not first sit down
and estimate the cost to see if he has enough money to complete it?
For if he lays the foundation and is not able to finish it, everyone who
sees it will ridicule him, saying, "this fellow began to build and was
not able to finish."

[30:(Luke 14:28-30)]

Coad and Yourdon state that the object-oriented paradigm's

fundamental differences from traditional methods represent a "new

technology curve" rather than the latest period of time on the current

structured programming "revolution" curve [13:155]. The evolutionary

curve of Figure 41 describes this path that most technologies travel. They

ask, if this is the best time to "jump" off the stagnated structured techniques

curve and onto the object-oriented curve. We will address each of the

following four questions they submit for this decision:

Is the object-oriented paradigm sufficiently mature and well
developed?

Is there a good object-oriented implementation technology
available? Does the development organization provide adequate
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tools for its practitioners to effectively use object-oriented
techniques?

Is the development organization sophisticated enough to
successfully change its development methods?

Are the systems and applications being developed by the
organization the kind that will most effectively use the object-
oriented paradigm? [13:155-156]

LEVEL OF
DEVELOPMENT

maturity / stagnation

rapid development

early development

TIME

Figure 41. Technology Evolution Curve [13:155].

4.5.1 Object-Oriented Paradigm Maturity. Though the maturity

level of any new technology is important to consider when choosing to adopt

its techniques, this should not be the case with the object-oriented

paradigm. In one sense object-oriented technology is new as it relates to
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acceptance in design practice and database evolution. However, object-

oriented ideas in programming and modeling are not new and, in fact, are

mature as a technology. We would even consider entity-relationship

modeling as a big step in object-oriented practice, since entities are

abstractions of real-world objects. Object-oriented maturity and the

associated risk involved "is in the eye of the beholder" and will depend

ultimately on the aggressiveness of the organization.

The major issue of object-oriented maturity lies in the database

management system which is key to increasing data persistence

requirements. Since an OODBMS combines the well-developed object-

oriented language technology with the accomplished database technologies

to date, the real concern should be with the maturity of that alliance and the

resulting research challenges (both hardware and software) that surface.

Silberschatz et al. point out several areas where database research

contributions will be needed, at the basic level, to fulfill the demands of

future DBMS applications [47:114-120]. Even as the maturity of databases

continues to improve and thus the risks decrease, object-oriented design is

effective even when implemented using a relational, network, or

hierarchical DBMS [20:22], because "the use of object-oriented design

transcends the choice of database" [45:366].

4.5.2 Object-Oriented Implementation Technology. Though object-

oriented programming languages do not meet all the needs of the object-

oriented paradigm, they provide a richness of expressiveness, convenience,

error protection, and maintainability, which are critical factors in deciding

to go object-oriented. "Nevertheless, if you must use a non-object-oriented
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language, you will benefit from object-oriented analysis and design, even if

you lack some capabilities in the implementation language" [45:340].

Rumbaugh et al. directs an entire chapter to demonstrate how to

"manually" map (versus the automatic mapping of an 00 language

compiler) object-oriented concepts into non-object-oriented languages (like

C, Ada, and FORTRAN). They address eight required steps to implement

an object-oriented design [45:340-363].

"* Translate classes into data structures.

"• Pass arguments to methods.

"* Allocate storage for objects.

"* Implement inheritance in data structures.

"* Implement method resolution.

• Implement associations.

• Deal with concurrency.

* Encapsulate internal details of classes.

After describing these steps specifically for C, Ada, and FORTRAN,

Rumbaugh et al. conclude that "an object-oriented design will simplify your

task and provide greater flexibility and extensibility if you are willing to

program in a disciplined manner" [45:362]. Object-oriented notation simply

makes the conceptual mappings that must be done more explicit.

From the database standpoint of object-oriented implementation

technology, current object-oriented database management systems are still

in their infancy. However, there is hope that future OODBMS development
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will provide the robustness expected of the current commercial relational

DBMS [45:329; 47:113]. In general, OODBMSs combine the expressibility of

object-oriented programming languages with the persistence of the DBMS.

"00 programming languages are efficient at quickly navigating from one

object to another by traversing pointers. A relational DBMS performs

navigation by using joins, which are several orders of magnitude slower

than pointer traversal" [45:329]. This, of course, implies the assumption

that object-oriented queries are against individual objects rather than

against large sets of data, as the relational database is intended to function.

Regardless of the technological level (which continues to improve) of the

programming languages or database management systems, we have

consistently seen throughout this thesis that the object-oriented paradigm

is beneficial in both software and database design.

4.5.3 Software Process Maturity. Humphrey describes five levels of

process maturity for organization assessment, where "the primary

objective is to achieve a controlled and measured process as the foundation

for continuing improvement" [32:5]. The general characteristics of each

level are reviewed as follows:

Level 1: The Initial Process could properly be called ad hoc, and it is

often even chaotic. Until the process is under statistical

control, orderly progress in process improvement is not
possible. While there are many degrees of statistical

control, the first step is to achieve rudimentary
predictability of schedules and cost.

Level 2: The Repeatable Process provides control over the way the
organization establishes its plans and commitments. The
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organization has achieved a stable process with a
repeatable level of statistical control by initiating rigorous
project management of commitments, costs, schedules,
and changes.

Level 3: The Defined Process is where the organization has achieved

the foundation for major and continued progress. The
organization has defined the process as a basis for
consistent implementation and better understanding. At
this point advanced technology can usefully be introduced.

Level 4: The Managed Process is where software organizations
should expect to make substantial quality improvements.
The organization has initiated comprehensive process
measurements and analysis. This is when the most
significant quality improvements begin.

Level 5: The Optimizing Process is when the data is available to
tune the process itself. The organization now has a
foundation for continuing improvement and optimization of
the process. [32:5-12]

From these descriptions of the five process maturity levels we can see

that "jumping" to the new technology curve of the object-oriented paradigm

can only be effective when an organization is at the Defined Process Level.

This also reveals an interesting consequence; the desire to effectively use

the object-oriented paradigm may force organizations to improve their

software process maturity (at least to level three), thus resulting in a more

sophisticated development organization. Practice of object-oriented

techniques may at length be an indicator of the thriving software

organization.
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4.5.4 Object-Oriented Applications. Unless an organization is

building systems that will exploit object-oriented techniques, is there a need

to make the technology curve transition to the object-oriented methodology?

Constantine points out that, "while object-oriented development may have

some advantages over structured development without objects, some of the

claimed or demonstrated advantages are actually due to issues in software

organization that are really independent of object-orientation itself" [16:9].

The truth of this statement depends, of course, on the organization's

current and future products, along with the long range goals of the

organization. There are the obvious advantages of using object-oriented

techniques when building new systems such as graphical user interface

environment applications, where "the older structured approach fails"

[13:158]. However, we have seen that object-oriented technology improves

overall software development and maintenance, even for systems that do

not exploit object-oriented techniques. The amount of realized

improvement, in this case, may not be enough for some more conservative

organizations to justify welcoming the new paradigm. However, such a

short term view of the object-oriented adoption costs and benefits will result

in the ultimate stagnation and deterioration of an organization's growth.

4.5.5 Requirements for Object-Oriented Approach. "Indeed, object-

orientation can be beneficial in building any type of application; but a more

important issue is the way object-oriented approaches are promoted within

an organization and incorporated to support (or perhaps even establish) a

software development process" [34:92]. Konstantinow addresses some
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requirements for adopting the 00 approach and gives guidelines for

promoting an object-oriented development environment.

Konstatinow's premise "is first that an object-oriented approach is

applicable to large-scale system development and second that it actually can

help in building reliable and maintainable applications" [34:94]. He

contends that three things are required for the adoption of object-oriented

development:

"* An object-oriented design methodology,

"* An object-oriented programming language, and

"* An object-oriented database management system.

An object-oriented design methodology provides a common language

between users and developers to communicate a real-world problem and

understand system requirements in the form of real-world objects, their

behavior, and the interfaces among them. There is no initial urge to

functionally decompose the system into "modules," or force a data structure

on an object because a particular programming language is used.

Requirements can be easily validated by users and developers against

specifications and design of system objects, while implementation details

are transferred to later in the development process.

Though we have seen that object-oriented concepts can be mapped to

non-object-oriented languages, a good object-oriented language is required

"for effective implementation of a system designed according to an object-

oriented paradigm" [34:96]. Konstantinow defines a good object-oriented

language as one that not only supports the definition and use of classes,
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inheritance for object attribute and operation definition, type definition, and

constructs for procedural computation; but also supports features for data

abstraction, modularity, information hiding, and reusability.

As the evolution of the database moves towards the incorporation of

more and more application program responsibilities the object-oriented

database management system or object management system (OMS)

becomes more of a required feature for the object-oriented development

process. "In object oriented development, data and procedures are closely

connected; so that, in effect, the same database that is used in production to

support communication among objects in the application can also be used

to establish and control dependencies among the objects as they are being

developed" [34:97]. This moves "management" of the data from the

application programs to the database management system right from the

start of development. Figure 42 shows the integrated environment an OMS

can provide to an object-oriented model through the DBMS (for application

objects management), application manager (including tools), and user

interface to the OMS and applications.

4.5.6 Guidelines for Object-Oriented Promotion. "[Object-oriented]

methodologies offer tremendous potential for realizing a major software

engineering goal: building reliable applications from reusable components

in a way that, in the long run, will prove to be less expensive and more

efficient than traditional methods" [34:100]. Konstantinow's long term view

of object-oriented technology adoption is critical in the decision to "jump" to

a new technology curve. This "jump" can better be described as a smooth

transition with the least amount of disruption to current developmental
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practices already in place, by first "focusing on the usefulness of [the object-

oriented] approaches in system design, next introduce object-oriented data

modeling techniques and OMSs, and finally select an object-oriented

programming language for system construction" [34:99]. His guidelines

are categorized into four areas: process, methodology, tools, and

management.

OMS

' ........ ....... ................ ..... i

Applications
S prod•

User Interface f I

Figure 42. Integrated Object Management System [34:98].

Process

1. Outline an object-oriented development life cycle which suits the

overall development environment of the organization. Match this

with any practices or procedures already established, whenever

possible.

2. Investigate how an object-oriented paradigm may apply to

different application types (scientific, engineering, business DP)

encountered in the organization. Note that even within a

particular application area, the applicability may change. For
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example, a compute-intensive scientific application based on a

few deterministic formulas may not lend itself to object-oriented

design; however, a large-scale simulation with autonomous but
intricately connected communicating agents [as in war gaming]

certainly could benefit greatly from an object-oriented approach.

3. Demonstrate how an object-oriented paradigm applies well to the

different functional, behavioral, and data-oriented
representations of [a] system.

Methodology

1. Demonstrate the technical utility of an OMS. Show how the

constructs of an OMS both support object-oriented design and
provide analogs or connections to other standard database models

and information management systems within the organization.

2. Set forth requirements for object-oriented programming support

to extend the functions of an OMS in system development. Define

the minimum requirements (based on the organization's
information structure) for a data definition language (DDL), a

data manipulation language (DML) within the OMS, an object-
oriented procedural language, and interfaces to standard 3GLs

and 4GLs (including DDLs and DMLs) used in the organization.

Ask what features such languages should have and how they

relate to other programming methodologies adopted.

3. Analyze requirements for a flexible user interface to the OMS and

development systems. New methodologies for object
management, prototyping, and the like may require different

presentations to developers and different database access

mechanisms than are normally encountered in the organization.
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Tools

1. Establish guidelines for evaluating toolsets which integrate
object-oriented programming languages with OMSs.
Recommend selection of an OMS with languages already
integrated (as specified above).

2. Evaluate tools which offer programming extensions to 3GLs and

4GLs already accepted within the organization. The purpose is to
ease the transition from standard development techniques to an
object-oriented approach; in some cases, it may even be
appropriate to introduce object-oriented constructs through
standard programming languages [as previously discussed in
section 4.5.2].

3. Plan for computing system, networking, and workstation support
before introducing an integrated OMS. Delineate any expected
differences between installing an OMS and a standard DBMS
(along with its accompanying support environment) for use in a
development environment. Show how OMS administration
corresponds to or varies from database administration for DBMSs
already in use within the organization.

Management

1. Demonstrate the capability and usefulness of an integrated OMS
for coordinating technical activities (design, programming, and
database) in system development.

2. Promote a system development plan which incorporates an
integrated OMS for managing reusable objects and applications.

Note that designing for reusability calls for special considerations

concerning the development life cycle, identification and
management of reusable components, and strong underlying

database support which can be tied in naturally with the OMS.
The emphasis here is that design for reusability is not just a
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technical issue but has special significance for software
management as well.

3. Formulate a strategic plan for managing information for all
enterprises of the organization on the basis of object-oriented
systems. [34:99-100]

4.6 Chapter Summary

We have seen the differences between the relational and object-

oriented databases, and have discussed the relative merits of relational and

object-oriented data modeling. Our concern was not to extol one paradigm

above the other since each model serves the needs of different generations

in software engineering evolution. We then looked at the overall benefits

realized and promised from the next generation object-oriented technology

when adopted fully with 00-CASE tool support. Finally we looked at the

organizational concerns and requirements to effect a move to the object-

oriented paradigm.

Chapter 5 concludes with the inevitability of the object-oriented

paradigm in software engineering and database technology and

recommends research approaches that need to be taken to benefit now and

in the future.
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V. Conclusions and Recommendations

5.1 Overview

In this chapter, we will quickly summarize the object-oriented

modeling technology, which is essentially a superset of entity-relationship

modeling. Conclusions drawn from the analysis of "both" modeling

techniques and their underlying database management systems will then

be presented for STARS evaluation. Finally, motivation and general

recommendations for future research and military applications will be

presented.

5.2 Summary

5.2.1 Summary of Object-Oriented Modeling. Martin and Odell's

[411 pyramid illustration of Figure 43 provides an excellent summary of

object-oriented modeling. Chapter 3 described several of the current

modeling techniques proposed, yet all of these essentially are concerned

with modeling object structure and object behavior, as shown here.

Using the terminology of Figure 43, a high-level model is built of the

entire enterprise, it is then extended into a more detailed model of a

particular business area, and finally built into a design for one system

before actual construction. Object structure analysis concerns itself with

object types, object associations, generalization, and composition; while

object structure design concentrates on class identification, inheritance,
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and data structure. Object behavior analysis lies with event types, states,

trigger rules, control conditions, and operations; while object behavior

design deals with operation identification and method design. Various

diagramming methods were shown for object-oriented modeling and may

never fully standardize on one method due to personal preference; however,

it is recommended that 00-CASE tool builders standardize on diagrams

that are already widely understood to avoid incompatibility [41:121].

Object Structure Enterprise Object Behavior
Analysis MoeigAnalysis

Business Area

Analysis

Object Structure Object Behavior
Design Design

System
Desig

Construction

Structure Behavior

Figure 43. Interrelated Object Structure and Behavior Model [41:69].

Figure 44 shows how object-oriented modeling for software and

database uses the same conceptual model for analysis, design, and

implementation. "00 techniques tear down the conceptual walls between
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[conventional] analysis, design, programming (or code generation) and

database definition and access" [41:205].

Traditional development has four conceptual models.

Analysis DDesign Progrm m mg n Database

Entity-Relationship Data-Flow
Diagrams Diagrams COBOL Tables

Functional Structure PMI SQL
Decomposition Charts

FORTRAN SQL++
Process-Dependency Action
Diagrams Diagrams C

Object-oriented technology uses one consistent model.

Analysis Design Programming OODB

Object Model
Object Declaration
Object Manipulation

Figure 44. Object-Oriented Unified Conceptual Model [41:205].

5.2.2 Summary of Object-Oriented Design Steps. A simple summary

of object-oriented design is Hartrum's [28] "Easy Guide to OOD (Based on

Rumbaugh et al. [45])." These four "bits" of advice represent the basic steps

associated with common object-oriented designs.
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0000. Start with OOA.
* Information (ER) diagrams: objects, attributes,

relationships.
"* Dynamic (state) diagram: for each "interesting" object.
"• Functional (DFD) diagram and process descriptions.

0001. System design/context analysis.

"* Define system boundary.
"• Draw context diagram, establish interfaces.

0010. Move all objects and attributes from OOA to the design. Do not
add system-generated unique ID attributes.

0011. Add (if needed) a software object for each external interface

(e.g. fan, sensor, and user interface for a temperature

controller).

0100. Apply generalization to create new superclasses where

appropriate.

0101. Add lower level objects where appropriate (should evolve over

the course of the design).

0110. For each relationship in OOA (except 'ISA'), determine how to
represent it (design decision). Use handle (pointer) attributes.

0111. For each object define access operations.

1000. For each object's state diagram, determine the external events

that cause state transitions. Define an operation for each of

those.

1001. For each operation, using the functional (DFD) diagrams,

write pseudo-code. Define new operations for the associated
object and for other objects as needed.

1010. Define your communication convention. For local (same

object), private operations, procedure calls are appropriate.
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For communication between objects, use procedure calls or
messages, but be consistent. For messages, clearly specify
each message type, its destination object class, and the class'
operation that will be invoked. In your pseudo-code clearly
indicate where messages are sent, what message type, and if a
reply is awaited (blocking send).

1011. Tie it all together with a main program unit or user
interface/menu as appropriate.

1100. If appropriate, apply inheritance to move common attributes
and operations up the structure.

1101. Resolve inheritance.
"* Leave as an implementation issue.
"o Design "uninheritance" if no language support.

1110. Check for consistency.

o For each object, external operations should be clearly
marked and associated with a message type or procedure

calling signature.
o When invoking an operation in another object, clearly show
message send or procedure call. Syntax must match that in

the called object.
o Every external non-access operation should be invoked from

somewhere in your design.

1111. From 1110, draw object communication diagram (object

visibility). Be sure your syntax is defined.

5.3 Conclusions

Object-oriented modeling with respect to software and database

development is, as the title of Rush Limbaugh's first book states, "The Way
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Things Ought to Be" [37]. Though the object-oriented database

management system may still be considered a risky technology to adopt due

to its "immaturity," object-oriented modeling is a no-risk, high-yield

investment for the long term. As we wait for OODBMSs to mature, "object-

oriented concepts provide an excellent basis for modeling [the] hierarchical,

network, relational, and object-oriented DBMS" [45:388]. Patrick Barnes

stated "an observation [he] made during the course of [his] research is that

methodologies which are language independent seem to have the most

chance of surviving and being used over the long haul, [while] the more

complex the method, the less it seems to be used" [5:Sec 6,3]. In the course

of this thesis the object-oriented paradigm was shown to be implementation

language (and database) independent as well as a simplifying, natural

method for modeling real-world applications. The object-oriented

paradigm should be aggressively pursued, if only to provide a comir on

language for clear and natural communication between client and software

engineer in developing complex systems. In fact, "the object-oriented style

[of programming], is best suited to the broadest set of applications, namely,

industrial-strength software in which complexity is the dominant issue"

[7:38].

"The object model.. .provides a consistent mode of representation

across all programming problems. [Therefore,] the object-oriented

paradigm is capable of representing any program" [8:Sec 7,2-3]. Here lies

the chance for standardization within the software engineering field.

Object-oriented modeling represents a standard technique that can (and

should) be use throughout the Department of Defense (and beyond) for both

application and database development. The success of the object-oriented
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paradigm in the application environment can (and will) be enjoyed in the

DBMS arena as the two areas continue to evolve in codependency. The

challenges of the future will demand such a continuing merger of data and

behavior, as we stop thinking like computers and proceed to make our

computers "think" like us.

5.4 Recommendations

In looking to the future-as opposed to looking short term to

maintain the status quo in computer technology-it is only natural to

dream of what may someday be. Science fiction has become more and more

popular as those, once fictional, dreams of the authors continue to become

fact. As mentioned earlier, the holodeck of television's Star Trek: the Next

Generation is conceptually becoming a reality that has many military and

commercial application potentials. For example, war gaming and medical

training would be conducted using computer-generated "real-world"

objects.

As Figure 45 extends the previous database evolution example of

Figure 1 in the same direction we see the possibility of computer systems

that "program" themselves to meet the spoken or diagrammed demands of

the user-again, much like the computer systems of Star Trek: the Next

Generation. Though still a science fiction dream, the conceptual

ingredients for just such a capability are here today in the form of code

generators (for self-programming), formal methods (for requirements

specification), voice recognition and CASE tools (for input), etc.
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Figure 45. DBMS and Application Environments: the Next Generation.

We are headed toward model-based software development, where the

model becomes the working-level user "code" and the system automatically

generates the machine code without the user having to deal with mid-levels

of abstraction such as Ada, C++, or FORTRAN. By modifying the model to

fix problems, instead of the program, we move toward reuse and portability

of design instead of code [3]. Remember that the relational database was

originally considered a "toy" before it became the most popular DBMS in use

137



today. Therefore, STARS's trek for "the next generation of databases calls

for continued research into the foundations of database systems, in the

expectation that other such useful 'toys' will emerge" [47:113].

5.5 Closing Remarks

This thesis effort was essentially a strategic literature review of

object-oriented modeling at two stages of complexity and a comparison of

their underlying relational and object-oriented database management

systems. Much of the work was done by the many experts cited throughout

this thesis; however, bringing those views together enforces the notion that

object-oriented modeling is not a threat to software engineering simply

because it involves change. On the contrary, object-orientation was shown

to be only beneficial, and revealed as the inevitable direction that software

engineering is headed. The decision for any organization to embrace the

object-oriented paradigm comes down to whether they wish to be on the

cutting edge of software engineering or not.
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Appendix A. Glossary of Terms

Abstract Data Type (ADT)
A type of object that contains the definition of its data structure and

permitted operations. ADTs give objects a public interface through
its permitted operations. However, the representations and methods
of these interfaces are private. [41:451]

(1) An abstract data type consists of operations, (atomic) objects and
relationships among the objects. Algebraic specifications view the
operations (called by some authors the interface procedures) in terms
of pure functions. These are related to one another through standard

relations. [23:G1]

(2) A data structure (strictly, class of data structures) described by

the set of available services or operations defined on the data
structures; formally: a pair (D,P) consisting of a set, D, of logically-

exported domains plus a set, P, of logically-exported operations on
that domain; sometimes the programming module that implements
an abstract data type. [23:G1]

Abstraction
An abstraction denotes the essential characteristics of an object that

distinguish it from all other kinds of object and thus provide crisply
defined conceptual boundaries, relative to the perspective of the
viewer. [7:39]

ANSI/SPARC
(Acronym) American National Standards Institute / Systems
Planning and Requirements Committee.
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Attribute

A named property of a class describing a data value held by each

object of the class. [45:455] (See instance variable)

An identifiable association between an object and some other object or

set of objects. Each attribute is an instance of an attribute type.

[41:451]

(Acronym) binary large object.

Cardinality
A constraint on the number of objects that must participate in the

mapping of a function. This constraint is typically expressed as a

minimum and maximum number. The minimum cardinality

constraint indicates the least number of objects to which a given

object must map. The maximum indicates the greatest number of

objects to which a given object must map. [41:452] (See multiplicity)

CASE
(Acronym) computer-aided software engineering.

Class

A description of a group of objects with similar properties, common

behavior, common relationships, and common semantics. [45:455]

Conceptual View

The perspective of an entire enterprise. A high level model.

Cowncy

Concurrency is the property that distinguishes an active object from

one that is not active. [7:66]
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Cyclic Scheduling
Control passes from one process to another, and each process is
given a fixed amount of processing time, usually called a frame;
processes may be allocated time in frames or subframes. [7:183]

Data Abstraction

Abstracting common features or properties of a class of data, in
particular, shared attributes, common rules to which examples of
the data conform, and the operations defined on or by the data. [16:2]

Data Independence
The ability to modify how a data object is defined without affecting the

application program.

The ability to modify a scheme definition in one level [of abstraction]
without affecting a scheme definition in the next higher level. [35:12]

DBMS
(Acronym) database management system.

DDL
(Acronym) data definition language.

DFD
(Acronym) data flow diagram.

DML
(Acronym) data manipulation language.

Encapsulafion

Encapsulation is the process of hiding all of the details of an object
that do not contribute to its essential characteristics. [7:46]
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The programming language realization of information hiding, the

means by which the hiding of design and implementation details is

enforced in the program as written. [16:2]

A protective encasement that hides the implementation details of an

object, making its data accessible only by operations put there to

mediate its access. It is often used interchangeably with information

hiding. [41:453]

ER
(Acronym) entity-relationship.

Executive Scheduling
Some algorithm controls process scheduling. [7:183]

GUI
(Acronym) graphical user interface (pronounced "gooey").

Hierarchy

Hierarchy is a ranking or ordering of abstractions. [7:54]

Impedance Mismatch

Where information must pass between two languages that are

semantically and structurally different, such as a declarative data

sublanguage and an imperative general-purpose language. [39:206]

Information Hiding
A broad principle of software engineering wherein implementation

details and the consequences of design decisions are hidden within

well-defined programming packages or units. [16:21

Inheritance

A relationship between object classes by which features of one object

class become defined for another, descendent class. [16:2]
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Instance

An object described by a class. [45:4581

Instance Variable

An attribute or local variable of an object class; part of the state of an

object. [23:G17) (See attribute)

Instantiation
The process of creating instances from classes. [45:459]

Object creation. [41:4551

The process of creating an object instance (physical data realization)

at run time; also sometimes the object instance itself. [23:G171

IAN
(Acronym) local area network.

Manual Scheduling
Processes are scheduled by a user outside of the system. [7:1831

Modularity
Modularity is the property of a system that has been decomposed into
a set of cohesive and loosely coupled modules. [7:521

Multiple
A type of inheritance that permits a class to have more than one

superclass and to inherit features from all ancestors. [45:4591

multiplicity
The number of instances of one class that may relate to a single

instance of an associated class. (45:4591
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Nonpreemptive Scheduiing
The current process continues to execute until it relinquishes

control. [7:183]

A concept, abstraction, or thing with crisp boundaries and meanings

for the problem at hand; an instance of a class. [45:460] (See
instance)

A data abstraction encapsulated with the associated operations such
that information hiding is supported by restricting access to data and
internal state only by way of interfaces of the associated operations.

[16:2]

Object-Otiented
A software development strategy that organizes software as a

collection of objects that contain both data structure and behavior.
Abbreviated 00. [45:460]

OMS
(Acronym) object management system. See OODBMS.

OMT
(Acronym) Object Modeling Technique.

00
(Acronym) object-oriented.

OOA
(Acronym) object-oriented analysis.

OOASE
(Acronym) object-oriented computer-aided software engineering.
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OOD

(Acronym) object-oriented design.

OODBMS

(Acronym) object-oriented database management system. See OMS.

Orthogonality
Independence between systems.

PDL

(Acronym) program design language.

Persistence

Persistence is the property of an object through which its existence
transcends time (i.e. the object continues to exist after its creator
ceases to exist) and/or space (i.e. the object's location moves from the

address space in which it was created). [7:70]

Persistent Object

An object that survives the invoked operation that creates it. [41:456]

(See persistence)

Preemptive Scheduling

Higher priority processes that are ready to execute may preempt
lower priority ones that are currently executing; typically processes

with equal priority are given a time slice in which to execute, so that

computational resources are fairly distributed. [7:183]

RDBMS
(Acronym) relational database management system.

Referential Integrity
(In a relational database) A property of a database such that each
foreign key is consistent with its corresponding primary key. [45:462]
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Ensuring a value that appears in one relation for a given set of

attributes also appears for a certain set of attributes in another

relation. [35:151]

RMtT
(Acronym) relational model / Tasmania.

Schema Evolution
The ability of the data model to evolve with changing requirements.

[31:115]

Semantic Gap
The amount of abstraction that exists between the application

semantics (real-world problem view) and the logical schema
(representation) of the DBMS.

STARS
(Acronym) Software Technology for Adaptable Reliable Systems.

SQL
(Acronym) structured query language. A standard language for

interacting with a RDBMS.

Typng
Typing is the enforcement of the class of an object, such that objects of

different types may not be interchanged, or at the most, they may be

interchanged only in very restricted ways. [7:59]
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